use std::fmt; use rustc_ast::Mutability; use rustc_macros::HashStable; use rustc_type_ir::elaborate; use crate::mir::interpret::{ AllocId, AllocInit, Allocation, CTFE_ALLOC_SALT, Pointer, Scalar, alloc_range, }; use crate::ty::{self, Instance, TraitRef, Ty, TyCtxt}; #[derive(Clone, Copy, PartialEq, HashStable)] pub enum VtblEntry<'tcx> { /// destructor of this type (used in vtable header) MetadataDropInPlace, /// layout size of this type (used in vtable header) MetadataSize, /// layout align of this type (used in vtable header) MetadataAlign, /// non-dispatchable associated function that is excluded from trait object Vacant, /// dispatchable associated function Method(Instance<'tcx>), /// pointer to a separate supertrait vtable, can be used by trait upcasting coercion TraitVPtr(TraitRef<'tcx>), } impl<'tcx> fmt::Debug for VtblEntry<'tcx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { // We want to call `Display` on `Instance` and `PolyTraitRef`, // so we implement this manually. match self { VtblEntry::MetadataDropInPlace => write!(f, "MetadataDropInPlace"), VtblEntry::MetadataSize => write!(f, "MetadataSize"), VtblEntry::MetadataAlign => write!(f, "MetadataAlign"), VtblEntry::Vacant => write!(f, "Vacant"), VtblEntry::Method(instance) => write!(f, "Method({instance})"), VtblEntry::TraitVPtr(trait_ref) => write!(f, "TraitVPtr({trait_ref})"), } } } // Needs to be associated with the `'tcx` lifetime impl<'tcx> TyCtxt<'tcx> { pub const COMMON_VTABLE_ENTRIES: &'tcx [VtblEntry<'tcx>] = &[VtblEntry::MetadataDropInPlace, VtblEntry::MetadataSize, VtblEntry::MetadataAlign]; } pub const COMMON_VTABLE_ENTRIES_DROPINPLACE: usize = 0; pub const COMMON_VTABLE_ENTRIES_SIZE: usize = 1; pub const COMMON_VTABLE_ENTRIES_ALIGN: usize = 2; // Note that we don't have access to a self type here, this has to be purely based on the trait (and // supertrait) definitions. That means we can't call into the same vtable_entries code since that // returns a specific instantiation (e.g., with Vacant slots when bounds aren't satisfied). The goal // here is to do a best-effort approximation without duplicating a lot of code. // // This function is used in layout computation for e.g. &dyn Trait, so it's critical that this // function is an accurate approximation. We verify this when actually computing the vtable below. pub(crate) fn vtable_min_entries<'tcx>( tcx: TyCtxt<'tcx>, trait_ref: Option>, ) -> usize { let mut count = TyCtxt::COMMON_VTABLE_ENTRIES.len(); let Some(trait_ref) = trait_ref else { return count; }; // This includes self in supertraits. for def_id in elaborate::supertrait_def_ids(tcx, trait_ref.def_id) { count += tcx.own_existential_vtable_entries(def_id).len(); } count } /// Retrieves an allocation that represents the contents of a vtable. /// Since this is a query, allocations are cached and not duplicated. /// /// This is an "internal" `AllocId` that should never be used as a value in the interpreted program. /// The interpreter should use `AllocId` that refer to a `GlobalAlloc::VTable` instead. /// (This is similar to statics, which also have a similar "internal" `AllocId` storing their /// initial contents.) pub(super) fn vtable_allocation_provider<'tcx>( tcx: TyCtxt<'tcx>, key: (Ty<'tcx>, Option>), ) -> AllocId { let (ty, poly_trait_ref) = key; let vtable_entries = if let Some(poly_trait_ref) = poly_trait_ref { let trait_ref = poly_trait_ref.with_self_ty(tcx, ty); let trait_ref = tcx.erase_regions(trait_ref); tcx.vtable_entries(trait_ref) } else { TyCtxt::COMMON_VTABLE_ENTRIES }; // This confirms that the layout computation for &dyn Trait has an accurate sizing. assert!(vtable_entries.len() >= vtable_min_entries(tcx, poly_trait_ref)); let layout = tcx .layout_of(ty::TypingEnv::fully_monomorphized().as_query_input(ty)) .expect("failed to build vtable representation"); assert!(layout.is_sized(), "can't create a vtable for an unsized type"); let size = layout.size.bytes(); let align = layout.align.abi.bytes(); let ptr_size = tcx.data_layout.pointer_size(); let ptr_align = tcx.data_layout.pointer_align().abi; let vtable_size = ptr_size * u64::try_from(vtable_entries.len()).unwrap(); let mut vtable = Allocation::new(vtable_size, ptr_align, AllocInit::Uninit, ()); // No need to do any alignment checks on the memory accesses below, because we know the // allocation is correctly aligned as we created it above. Also we're only offsetting by // multiples of `ptr_align`, which means that it will stay aligned to `ptr_align`. for (idx, entry) in vtable_entries.iter().enumerate() { let idx: u64 = u64::try_from(idx).unwrap(); let scalar = match *entry { VtblEntry::MetadataDropInPlace => { if ty.needs_drop(tcx, ty::TypingEnv::fully_monomorphized()) { let instance = ty::Instance::resolve_drop_in_place(tcx, ty); let fn_alloc_id = tcx.reserve_and_set_fn_alloc(instance, CTFE_ALLOC_SALT); let fn_ptr = Pointer::from(fn_alloc_id); Scalar::from_pointer(fn_ptr, &tcx) } else { Scalar::from_maybe_pointer(Pointer::null(), &tcx) } } VtblEntry::MetadataSize => Scalar::from_uint(size, ptr_size), VtblEntry::MetadataAlign => Scalar::from_uint(align, ptr_size), VtblEntry::Vacant => continue, VtblEntry::Method(instance) => { // Prepare the fn ptr we write into the vtable. let fn_alloc_id = tcx.reserve_and_set_fn_alloc(instance, CTFE_ALLOC_SALT); let fn_ptr = Pointer::from(fn_alloc_id); Scalar::from_pointer(fn_ptr, &tcx) } VtblEntry::TraitVPtr(trait_ref) => { let super_trait_ref = ty::ExistentialTraitRef::erase_self_ty(tcx, trait_ref); let supertrait_alloc_id = tcx.vtable_allocation((ty, Some(super_trait_ref))); let vptr = Pointer::from(supertrait_alloc_id); Scalar::from_pointer(vptr, &tcx) } }; vtable .write_scalar(&tcx, alloc_range(ptr_size * idx, ptr_size), scalar) .expect("failed to build vtable representation"); } vtable.mutability = Mutability::Not; tcx.reserve_and_set_memory_alloc(tcx.mk_const_alloc(vtable)) }