//! A pass that promotes borrows of constant rvalues. //! //! The rvalues considered constant are trees of temps, //! each with exactly one initialization, and holding //! a constant value with no interior mutability. //! They are placed into a new MIR constant body in //! `promoted` and the borrow rvalue is replaced with //! a `Literal::Promoted` using the index into `promoted` //! of that constant MIR. //! //! This pass assumes that every use is dominated by an //! initialization and can otherwise silence errors, if //! move analysis runs after promotion on broken MIR. use rustc_ast::LitKind; use rustc_hir as hir; use rustc_hir::def_id::DefId; use rustc_middle::mir::traversal::ReversePostorder; use rustc_middle::mir::visit::{MutVisitor, MutatingUseContext, PlaceContext, Visitor}; use rustc_middle::mir::*; use rustc_middle::ty::cast::CastTy; use rustc_middle::ty::subst::InternalSubsts; use rustc_middle::ty::{self, List, TyCtxt, TypeFoldable}; use rustc_span::symbol::sym; use rustc_span::Span; use rustc_index::vec::{Idx, IndexVec}; use rustc_target::spec::abi::Abi; use std::cell::Cell; use std::{cmp, iter, mem}; use crate::const_eval::{is_const_fn, is_unstable_const_fn}; use crate::transform::check_consts::{is_lang_panic_fn, qualifs, ConstCx}; use crate::transform::MirPass; /// A `MirPass` for promotion. /// /// Promotion is the extraction of promotable temps into separate MIR bodies. This pass also emits /// errors when promotion of `#[rustc_args_required_const]` arguments fails. /// /// After this pass is run, `promoted_fragments` will hold the MIR body corresponding to each /// newly created `Constant`. #[derive(Default)] pub struct PromoteTemps<'tcx> { pub promoted_fragments: Cell>>, } impl<'tcx> MirPass<'tcx> for PromoteTemps<'tcx> { fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) { // There's not really any point in promoting errorful MIR. // // This does not include MIR that failed const-checking, which we still try to promote. if body.return_ty().references_error() { tcx.sess.delay_span_bug(body.span, "PromoteTemps: MIR had errors"); return; } if body.source.promoted.is_some() { return; } let mut rpo = traversal::reverse_postorder(body); let ccx = ConstCx::new(tcx, body); let (temps, all_candidates) = collect_temps_and_candidates(&ccx, &mut rpo); let promotable_candidates = validate_candidates(&ccx, &temps, &all_candidates); let promoted = promote_candidates(body, tcx, temps, promotable_candidates); self.promoted_fragments.set(promoted); } } /// State of a temporary during collection and promotion. #[derive(Copy, Clone, PartialEq, Eq, Debug)] pub enum TempState { /// No references to this temp. Undefined, /// One direct assignment and any number of direct uses. /// A borrow of this temp is promotable if the assigned /// value is qualified as constant. Defined { location: Location, uses: usize }, /// Any other combination of assignments/uses. Unpromotable, /// This temp was part of an rvalue which got extracted /// during promotion and needs cleanup. PromotedOut, } impl TempState { pub fn is_promotable(&self) -> bool { debug!("is_promotable: self={:?}", self); matches!(self, TempState::Defined { .. } ) } } /// A "root candidate" for promotion, which will become the /// returned value in a promoted MIR, unless it's a subset /// of a larger candidate. #[derive(Copy, Clone, PartialEq, Eq, Debug)] pub enum Candidate { /// Borrow of a constant temporary, candidate for lifetime extension. Ref(Location), /// Promotion of the `x` in `[x; 32]`. Repeat(Location), /// Currently applied to function calls where the callee has the unstable /// `#[rustc_args_required_const]` attribute as well as the SIMD shuffle /// intrinsic. The intrinsic requires the arguments are indeed constant and /// the attribute currently provides the semantic requirement that arguments /// must be constant. Argument { bb: BasicBlock, index: usize }, /// `const` operand in asm!. InlineAsm { bb: BasicBlock, index: usize }, } impl Candidate { /// Returns `true` if we should use the "explicit" rules for promotability for this `Candidate`. fn forces_explicit_promotion(&self) -> bool { match self { Candidate::Ref(_) | Candidate::Repeat(_) => false, Candidate::Argument { .. } | Candidate::InlineAsm { .. } => true, } } fn source_info(&self, body: &Body<'_>) -> SourceInfo { match self { Candidate::Ref(location) | Candidate::Repeat(location) => *body.source_info(*location), Candidate::Argument { bb, .. } | Candidate::InlineAsm { bb, .. } => { *body.source_info(body.terminator_loc(*bb)) } } } } fn args_required_const(tcx: TyCtxt<'_>, def_id: DefId) -> Option> { let attrs = tcx.get_attrs(def_id); let attr = attrs.iter().find(|a| tcx.sess.check_name(a, sym::rustc_args_required_const))?; let mut ret = vec![]; for meta in attr.meta_item_list()? { match meta.literal()?.kind { LitKind::Int(a, _) => { ret.push(a as usize); } _ => bug!("invalid arg index"), } } Some(ret) } struct Collector<'a, 'tcx> { ccx: &'a ConstCx<'a, 'tcx>, temps: IndexVec, candidates: Vec, } impl<'tcx> Visitor<'tcx> for Collector<'_, 'tcx> { fn visit_local(&mut self, &index: &Local, context: PlaceContext, location: Location) { debug!("visit_local: index={:?} context={:?} location={:?}", index, context, location); // We're only interested in temporaries and the return place match self.ccx.body.local_kind(index) { LocalKind::Temp | LocalKind::ReturnPointer => {} LocalKind::Arg | LocalKind::Var => return, } // Ignore drops, if the temp gets promoted, // then it's constant and thus drop is noop. // Non-uses are also irrelevant. if context.is_drop() || !context.is_use() { debug!( "visit_local: context.is_drop={:?} context.is_use={:?}", context.is_drop(), context.is_use(), ); return; } let temp = &mut self.temps[index]; debug!("visit_local: temp={:?}", temp); if *temp == TempState::Undefined { match context { PlaceContext::MutatingUse(MutatingUseContext::Store) | PlaceContext::MutatingUse(MutatingUseContext::Call) => { *temp = TempState::Defined { location, uses: 0 }; return; } _ => { /* mark as unpromotable below */ } } } else if let TempState::Defined { ref mut uses, .. } = *temp { // We always allow borrows, even mutable ones, as we need // to promote mutable borrows of some ZSTs e.g., `&mut []`. let allowed_use = match context { PlaceContext::MutatingUse(MutatingUseContext::Borrow) | PlaceContext::NonMutatingUse(_) => true, PlaceContext::MutatingUse(_) | PlaceContext::NonUse(_) => false, }; debug!("visit_local: allowed_use={:?}", allowed_use); if allowed_use { *uses += 1; return; } /* mark as unpromotable below */ } *temp = TempState::Unpromotable; } fn visit_rvalue(&mut self, rvalue: &Rvalue<'tcx>, location: Location) { self.super_rvalue(rvalue, location); match *rvalue { Rvalue::Ref(..) => { self.candidates.push(Candidate::Ref(location)); } Rvalue::Repeat(..) if self.ccx.tcx.features().const_in_array_repeat_expressions => { // FIXME(#49147) only promote the element when it isn't `Copy` // (so that code that can copy it at runtime is unaffected). self.candidates.push(Candidate::Repeat(location)); } _ => {} } } fn visit_terminator(&mut self, terminator: &Terminator<'tcx>, location: Location) { self.super_terminator(terminator, location); match terminator.kind { TerminatorKind::Call { ref func, .. } => { if let ty::FnDef(def_id, _) = *func.ty(self.ccx.body, self.ccx.tcx).kind() { let fn_sig = self.ccx.tcx.fn_sig(def_id); if let Abi::RustIntrinsic | Abi::PlatformIntrinsic = fn_sig.abi() { let name = self.ccx.tcx.item_name(def_id); // FIXME(eddyb) use `#[rustc_args_required_const(2)]` for shuffles. if name.as_str().starts_with("simd_shuffle") { self.candidates .push(Candidate::Argument { bb: location.block, index: 2 }); return; // Don't double count `simd_shuffle` candidates } } if let Some(constant_args) = args_required_const(self.ccx.tcx, def_id) { for index in constant_args { self.candidates.push(Candidate::Argument { bb: location.block, index }); } } } } TerminatorKind::InlineAsm { ref operands, .. } => { for (index, op) in operands.iter().enumerate() { if let InlineAsmOperand::Const { .. } = op { self.candidates.push(Candidate::InlineAsm { bb: location.block, index }) } } } _ => {} } } } pub fn collect_temps_and_candidates( ccx: &ConstCx<'mir, 'tcx>, rpo: &mut ReversePostorder<'_, 'tcx>, ) -> (IndexVec, Vec) { let mut collector = Collector { temps: IndexVec::from_elem(TempState::Undefined, &ccx.body.local_decls), candidates: vec![], ccx, }; for (bb, data) in rpo { collector.visit_basic_block_data(bb, data); } (collector.temps, collector.candidates) } /// Checks whether locals that appear in a promotion context (`Candidate`) are actually promotable. /// /// This wraps an `Item`, and has access to all fields of that `Item` via `Deref` coercion. struct Validator<'a, 'tcx> { ccx: &'a ConstCx<'a, 'tcx>, temps: &'a IndexVec, /// Explicit promotion happens e.g. for constant arguments declared via /// `rustc_args_required_const`. /// Implicit promotion has almost the same rules, except that disallows `const fn` /// except for those marked `#[rustc_promotable]`. This is to avoid changing /// a legitimate run-time operation into a failing compile-time operation /// e.g. due to addresses being compared inside the function. explicit: bool, } impl std::ops::Deref for Validator<'a, 'tcx> { type Target = ConstCx<'a, 'tcx>; fn deref(&self) -> &Self::Target { &self.ccx } } struct Unpromotable; impl<'tcx> Validator<'_, 'tcx> { fn validate_candidate(&self, candidate: Candidate) -> Result<(), Unpromotable> { match candidate { Candidate::Ref(loc) => { assert!(!self.explicit); let statement = &self.body[loc.block].statements[loc.statement_index]; match &statement.kind { StatementKind::Assign(box (_, Rvalue::Ref(_, kind, place))) => { match kind { BorrowKind::Shared | BorrowKind::Mut { .. } => {} // FIXME(eddyb) these aren't promoted here but *could* // be promoted as part of a larger value because // `validate_rvalue` doesn't check them, need to // figure out what is the intended behavior. BorrowKind::Shallow | BorrowKind::Unique => return Err(Unpromotable), } // We can only promote interior borrows of promotable temps (non-temps // don't get promoted anyway). self.validate_local(place.local)?; if place.projection.contains(&ProjectionElem::Deref) { return Err(Unpromotable); } if self.qualif_local::(place.local) { return Err(Unpromotable); } // FIXME(eddyb) this duplicates part of `validate_rvalue`. let has_mut_interior = self.qualif_local::(place.local); if has_mut_interior { return Err(Unpromotable); } if let BorrowKind::Mut { .. } = kind { let ty = place.ty(self.body, self.tcx).ty; // In theory, any zero-sized value could be borrowed // mutably without consequences. However, only &mut [] // is allowed right now. if let ty::Array(_, len) = ty.kind() { match len.try_eval_usize(self.tcx, self.param_env) { Some(0) => {} _ => return Err(Unpromotable), } } else { return Err(Unpromotable); } } Ok(()) } _ => bug!(), } } Candidate::Repeat(loc) => { assert!(!self.explicit); let statement = &self.body[loc.block].statements[loc.statement_index]; match &statement.kind { StatementKind::Assign(box (_, Rvalue::Repeat(ref operand, _))) => { if !self.tcx.features().const_in_array_repeat_expressions { return Err(Unpromotable); } self.validate_operand(operand) } _ => bug!(), } } Candidate::Argument { bb, index } => { assert!(self.explicit); let terminator = self.body[bb].terminator(); match &terminator.kind { TerminatorKind::Call { args, .. } => self.validate_operand(&args[index]), _ => bug!(), } } Candidate::InlineAsm { bb, index } => { assert!(self.explicit); let terminator = self.body[bb].terminator(); match &terminator.kind { TerminatorKind::InlineAsm { operands, .. } => match &operands[index] { InlineAsmOperand::Const { value } => self.validate_operand(value), _ => bug!(), }, _ => bug!(), } } } } // FIXME(eddyb) maybe cache this? fn qualif_local(&self, local: Local) -> bool { if let TempState::Defined { location: loc, .. } = self.temps[local] { let num_stmts = self.body[loc.block].statements.len(); if loc.statement_index < num_stmts { let statement = &self.body[loc.block].statements[loc.statement_index]; match &statement.kind { StatementKind::Assign(box (_, rhs)) => qualifs::in_rvalue::( &self.ccx, &mut |l| self.qualif_local::(l), rhs, ), _ => { span_bug!( statement.source_info.span, "{:?} is not an assignment", statement ); } } } else { let terminator = self.body[loc.block].terminator(); match &terminator.kind { TerminatorKind::Call { .. } => { let return_ty = self.body.local_decls[local].ty; Q::in_any_value_of_ty(&self.ccx, return_ty) } kind => { span_bug!(terminator.source_info.span, "{:?} not promotable", kind); } } } } else { let span = self.body.local_decls[local].source_info.span; span_bug!(span, "{:?} not promotable, qualif_local shouldn't have been called", local); } } // FIXME(eddyb) maybe cache this? fn validate_local(&self, local: Local) -> Result<(), Unpromotable> { if let TempState::Defined { location: loc, .. } = self.temps[local] { let num_stmts = self.body[loc.block].statements.len(); if loc.statement_index < num_stmts { let statement = &self.body[loc.block].statements[loc.statement_index]; match &statement.kind { StatementKind::Assign(box (_, rhs)) => self.validate_rvalue(rhs), _ => { span_bug!( statement.source_info.span, "{:?} is not an assignment", statement ); } } } else { let terminator = self.body[loc.block].terminator(); match &terminator.kind { TerminatorKind::Call { func, args, .. } => self.validate_call(func, args), TerminatorKind::Yield { .. } => Err(Unpromotable), kind => { span_bug!(terminator.source_info.span, "{:?} not promotable", kind); } } } } else { Err(Unpromotable) } } fn validate_place(&self, place: PlaceRef<'tcx>) -> Result<(), Unpromotable> { match place { PlaceRef { local, projection: [] } => self.validate_local(local), PlaceRef { local, projection: [proj_base @ .., elem] } => { // Validate topmost projection, then recurse. match *elem { ProjectionElem::Deref => { let mut promotable = false; // This is a special treatment for cases like *&STATIC where STATIC is a // global static variable. // This pattern is generated only when global static variables are directly // accessed and is qualified for promotion safely. if let TempState::Defined { location, .. } = self.temps[local] { let def_stmt = self.body[location.block].statements.get(location.statement_index); if let Some(Statement { kind: StatementKind::Assign(box (_, Rvalue::Use(Operand::Constant(c)))), .. }) = def_stmt { if let Some(did) = c.check_static_ptr(self.tcx) { // Evaluating a promoted may not read statics except if it got // promoted from a static (this is a CTFE check). So we // can only promote static accesses inside statics. if let Some(hir::ConstContext::Static(..)) = self.const_kind { // The `is_empty` predicate is introduced to exclude the case // where the projection operations are [ .field, * ]. // The reason is because promotion will be illegal if field // accesses precede the dereferencing. // Discussion can be found at // https://github.com/rust-lang/rust/pull/74945#discussion_r463063247 // There may be opportunity for generalization, but this needs to be // accounted for. if proj_base.is_empty() && !self.tcx.is_thread_local_static(did) { promotable = true; } } } } } if !promotable { return Err(Unpromotable); } } ProjectionElem::Downcast(..) => { return Err(Unpromotable); } ProjectionElem::ConstantIndex { .. } | ProjectionElem::Subslice { .. } => {} ProjectionElem::Index(local) => { self.validate_local(local)?; } ProjectionElem::Field(..) => { let base_ty = Place::ty_from(place.local, proj_base, self.body, self.tcx).ty; if let Some(def) = base_ty.ty_adt_def() { // No promotion of union field accesses. if def.is_union() { return Err(Unpromotable); } } } } self.validate_place(PlaceRef { local: place.local, projection: proj_base }) } } } fn validate_operand(&self, operand: &Operand<'tcx>) -> Result<(), Unpromotable> { match operand { Operand::Copy(place) | Operand::Move(place) => self.validate_place(place.as_ref()), // The qualifs for a constant (e.g. `HasMutInterior`) are checked in // `validate_rvalue` upon access. Operand::Constant(c) => { if let Some(def_id) = c.check_static_ptr(self.tcx) { // Only allow statics (not consts) to refer to other statics. // FIXME(eddyb) does this matter at all for promotion? // FIXME(RalfJung) it makes little sense to not promote this in `fn`/`const fn`, // and in `const` this cannot occur anyway. The only concern is that we might // promote even `let x = &STATIC` which would be useless, but this applies to // promotion inside statics as well. let is_static = matches!(self.const_kind, Some(hir::ConstContext::Static(_))); if !is_static { return Err(Unpromotable); } let is_thread_local = self.tcx.is_thread_local_static(def_id); if is_thread_local { return Err(Unpromotable); } } Ok(()) } } } fn validate_rvalue(&self, rvalue: &Rvalue<'tcx>) -> Result<(), Unpromotable> { match *rvalue { Rvalue::Cast(CastKind::Misc, ref operand, cast_ty) => { let operand_ty = operand.ty(self.body, self.tcx); let cast_in = CastTy::from_ty(operand_ty).expect("bad input type for cast"); let cast_out = CastTy::from_ty(cast_ty).expect("bad output type for cast"); if let (CastTy::Ptr(_) | CastTy::FnPtr, CastTy::Int(_)) = (cast_in, cast_out) { // ptr-to-int casts are not possible in consts and thus not promotable return Err(Unpromotable); } } Rvalue::BinaryOp(op, ref lhs, _) => { if let ty::RawPtr(_) | ty::FnPtr(..) = lhs.ty(self.body, self.tcx).kind() { assert!( op == BinOp::Eq || op == BinOp::Ne || op == BinOp::Le || op == BinOp::Lt || op == BinOp::Ge || op == BinOp::Gt || op == BinOp::Offset ); // raw pointer operations are not allowed inside consts and thus not promotable return Err(Unpromotable); } } Rvalue::NullaryOp(NullOp::Box, _) => return Err(Unpromotable), // FIXME(RalfJung): the rest is *implicitly considered promotable*... that seems dangerous. _ => {} } match rvalue { Rvalue::ThreadLocalRef(_) => Err(Unpromotable), Rvalue::NullaryOp(..) => Ok(()), Rvalue::Discriminant(place) | Rvalue::Len(place) => self.validate_place(place.as_ref()), Rvalue::Use(operand) | Rvalue::Repeat(operand, _) | Rvalue::UnaryOp(_, operand) | Rvalue::Cast(_, operand, _) => self.validate_operand(operand), Rvalue::BinaryOp(_, lhs, rhs) | Rvalue::CheckedBinaryOp(_, lhs, rhs) => { self.validate_operand(lhs)?; self.validate_operand(rhs) } Rvalue::AddressOf(_, place) => { // We accept `&raw *`, i.e., raw reborrows -- creating a raw pointer is // no problem, only using it is. if let [proj_base @ .., ProjectionElem::Deref] = place.projection.as_ref() { let base_ty = Place::ty_from(place.local, proj_base, self.body, self.tcx).ty; if let ty::Ref(..) = base_ty.kind() { return self.validate_place(PlaceRef { local: place.local, projection: proj_base, }); } } Err(Unpromotable) } Rvalue::Ref(_, kind, place) => { if let BorrowKind::Mut { .. } = kind { let ty = place.ty(self.body, self.tcx).ty; // In theory, any zero-sized value could be borrowed // mutably without consequences. However, only &mut [] // is allowed right now. if let ty::Array(_, len) = ty.kind() { match len.try_eval_usize(self.tcx, self.param_env) { Some(0) => {} _ => return Err(Unpromotable), } } else { return Err(Unpromotable); } } // Special-case reborrows to be more like a copy of the reference. let mut place = place.as_ref(); if let [proj_base @ .., ProjectionElem::Deref] = &place.projection { let base_ty = Place::ty_from(place.local, proj_base, self.body, self.tcx).ty; if let ty::Ref(..) = base_ty.kind() { place = PlaceRef { local: place.local, projection: proj_base }; } } self.validate_place(place)?; let has_mut_interior = self.qualif_local::(place.local); if has_mut_interior { return Err(Unpromotable); } Ok(()) } Rvalue::Aggregate(_, ref operands) => { for o in operands { self.validate_operand(o)?; } Ok(()) } } } fn validate_call( &self, callee: &Operand<'tcx>, args: &[Operand<'tcx>], ) -> Result<(), Unpromotable> { let fn_ty = callee.ty(self.body, self.tcx); // When doing explicit promotion and inside const/static items, we promote all (eligible) function calls. // Everywhere else, we require `#[rustc_promotable]` on the callee. let promote_all_const_fn = self.explicit || matches!( self.const_kind, Some(hir::ConstContext::Static(_) | hir::ConstContext::Const) ); if !promote_all_const_fn { if let ty::FnDef(def_id, _) = *fn_ty.kind() { // Never promote runtime `const fn` calls of // functions without `#[rustc_promotable]`. if !self.tcx.is_promotable_const_fn(def_id) { return Err(Unpromotable); } } } let is_const_fn = match *fn_ty.kind() { ty::FnDef(def_id, _) => { is_const_fn(self.tcx, def_id) || is_unstable_const_fn(self.tcx, def_id).is_some() || is_lang_panic_fn(self.tcx, def_id) } _ => false, }; if !is_const_fn { return Err(Unpromotable); } self.validate_operand(callee)?; for arg in args { self.validate_operand(arg)?; } Ok(()) } } // FIXME(eddyb) remove the differences for promotability in `static`, `const`, `const fn`. pub fn validate_candidates( ccx: &ConstCx<'_, '_>, temps: &IndexVec, candidates: &[Candidate], ) -> Vec { let mut validator = Validator { ccx, temps, explicit: false }; candidates .iter() .copied() .filter(|&candidate| { validator.explicit = candidate.forces_explicit_promotion(); // FIXME(eddyb) also emit the errors for shuffle indices // and `#[rustc_args_required_const]` arguments here. let is_promotable = validator.validate_candidate(candidate).is_ok(); // If we use explicit validation, we carry the risk of turning a legitimate run-time // operation into a failing compile-time operation. Make sure that does not happen // by asserting that there is no possible run-time behavior here in case promotion // fails. if validator.explicit && !is_promotable { ccx.tcx.sess.delay_span_bug( ccx.body.span, "Explicit promotion requested, but failed to promote", ); } match candidate { Candidate::Argument { bb, index } | Candidate::InlineAsm { bb, index } if !is_promotable => { let span = ccx.body[bb].terminator().source_info.span; let msg = format!("argument {} is required to be a constant", index + 1); ccx.tcx.sess.span_err(span, &msg); } _ => (), } is_promotable }) .collect() } struct Promoter<'a, 'tcx> { tcx: TyCtxt<'tcx>, source: &'a mut Body<'tcx>, promoted: Body<'tcx>, temps: &'a mut IndexVec, extra_statements: &'a mut Vec<(Location, Statement<'tcx>)>, /// If true, all nested temps are also kept in the /// source MIR, not moved to the promoted MIR. keep_original: bool, } impl<'a, 'tcx> Promoter<'a, 'tcx> { fn new_block(&mut self) -> BasicBlock { let span = self.promoted.span; self.promoted.basic_blocks_mut().push(BasicBlockData { statements: vec![], terminator: Some(Terminator { source_info: SourceInfo::outermost(span), kind: TerminatorKind::Return, }), is_cleanup: false, }) } fn assign(&mut self, dest: Local, rvalue: Rvalue<'tcx>, span: Span) { let last = self.promoted.basic_blocks().last().unwrap(); let data = &mut self.promoted[last]; data.statements.push(Statement { source_info: SourceInfo::outermost(span), kind: StatementKind::Assign(box (Place::from(dest), rvalue)), }); } fn is_temp_kind(&self, local: Local) -> bool { self.source.local_kind(local) == LocalKind::Temp } /// Copies the initialization of this temp to the /// promoted MIR, recursing through temps. fn promote_temp(&mut self, temp: Local) -> Local { let old_keep_original = self.keep_original; let loc = match self.temps[temp] { TempState::Defined { location, uses } if uses > 0 => { if uses > 1 { self.keep_original = true; } location } state => { span_bug!(self.promoted.span, "{:?} not promotable: {:?}", temp, state); } }; if !self.keep_original { self.temps[temp] = TempState::PromotedOut; } let num_stmts = self.source[loc.block].statements.len(); let new_temp = self.promoted.local_decls.push(LocalDecl::new( self.source.local_decls[temp].ty, self.source.local_decls[temp].source_info.span, )); debug!("promote({:?} @ {:?}/{:?}, {:?})", temp, loc, num_stmts, self.keep_original); // First, take the Rvalue or Call out of the source MIR, // or duplicate it, depending on keep_original. if loc.statement_index < num_stmts { let (mut rvalue, source_info) = { let statement = &mut self.source[loc.block].statements[loc.statement_index]; let rhs = match statement.kind { StatementKind::Assign(box (_, ref mut rhs)) => rhs, _ => { span_bug!( statement.source_info.span, "{:?} is not an assignment", statement ); } }; ( if self.keep_original { rhs.clone() } else { let unit = Rvalue::Use(Operand::Constant(box Constant { span: statement.source_info.span, user_ty: None, literal: ty::Const::zero_sized(self.tcx, self.tcx.types.unit), })); mem::replace(rhs, unit) }, statement.source_info, ) }; self.visit_rvalue(&mut rvalue, loc); self.assign(new_temp, rvalue, source_info.span); } else { let terminator = if self.keep_original { self.source[loc.block].terminator().clone() } else { let terminator = self.source[loc.block].terminator_mut(); let target = match terminator.kind { TerminatorKind::Call { destination: Some((_, target)), .. } => target, ref kind => { span_bug!(terminator.source_info.span, "{:?} not promotable", kind); } }; Terminator { source_info: terminator.source_info, kind: mem::replace(&mut terminator.kind, TerminatorKind::Goto { target }), } }; match terminator.kind { TerminatorKind::Call { mut func, mut args, from_hir_call, fn_span, .. } => { self.visit_operand(&mut func, loc); for arg in &mut args { self.visit_operand(arg, loc); } let last = self.promoted.basic_blocks().last().unwrap(); let new_target = self.new_block(); *self.promoted[last].terminator_mut() = Terminator { kind: TerminatorKind::Call { func, args, cleanup: None, destination: Some((Place::from(new_temp), new_target)), from_hir_call, fn_span, }, source_info: SourceInfo::outermost(terminator.source_info.span), ..terminator }; } ref kind => { span_bug!(terminator.source_info.span, "{:?} not promotable", kind); } }; }; self.keep_original = old_keep_original; new_temp } fn promote_candidate( mut self, candidate: Candidate, next_promoted_id: usize, ) -> Option> { let def = self.source.source.with_opt_param(); let mut rvalue = { let promoted = &mut self.promoted; let promoted_id = Promoted::new(next_promoted_id); let tcx = self.tcx; let mut promoted_operand = |ty, span| { promoted.span = span; promoted.local_decls[RETURN_PLACE] = LocalDecl::new(ty, span); Operand::Constant(Box::new(Constant { span, user_ty: None, literal: tcx.mk_const(ty::Const { ty, val: ty::ConstKind::Unevaluated( def, InternalSubsts::for_item(tcx, def.did, |param, _| { if let ty::GenericParamDefKind::Lifetime = param.kind { tcx.lifetimes.re_erased.into() } else { tcx.mk_param_from_def(param) } }), Some(promoted_id), ), }), })) }; let (blocks, local_decls) = self.source.basic_blocks_and_local_decls_mut(); match candidate { Candidate::Ref(loc) => { let statement = &mut blocks[loc.block].statements[loc.statement_index]; match statement.kind { StatementKind::Assign(box ( _, Rvalue::Ref(ref mut region, borrow_kind, ref mut place), )) => { // Use the underlying local for this (necessarily interior) borrow. let ty = local_decls.local_decls()[place.local].ty; let span = statement.source_info.span; let ref_ty = tcx.mk_ref( tcx.lifetimes.re_erased, ty::TypeAndMut { ty, mutbl: borrow_kind.to_mutbl_lossy() }, ); *region = tcx.lifetimes.re_erased; let mut projection = vec![PlaceElem::Deref]; projection.extend(place.projection); place.projection = tcx.intern_place_elems(&projection); // Create a temp to hold the promoted reference. // This is because `*r` requires `r` to be a local, // otherwise we would use the `promoted` directly. let mut promoted_ref = LocalDecl::new(ref_ty, span); promoted_ref.source_info = statement.source_info; let promoted_ref = local_decls.push(promoted_ref); assert_eq!(self.temps.push(TempState::Unpromotable), promoted_ref); let promoted_ref_statement = Statement { source_info: statement.source_info, kind: StatementKind::Assign(Box::new(( Place::from(promoted_ref), Rvalue::Use(promoted_operand(ref_ty, span)), ))), }; self.extra_statements.push((loc, promoted_ref_statement)); Rvalue::Ref( tcx.lifetimes.re_erased, borrow_kind, Place { local: mem::replace(&mut place.local, promoted_ref), projection: List::empty(), }, ) } _ => bug!(), } } Candidate::Repeat(loc) => { let statement = &mut blocks[loc.block].statements[loc.statement_index]; match statement.kind { StatementKind::Assign(box (_, Rvalue::Repeat(ref mut operand, _))) => { let ty = operand.ty(local_decls, self.tcx); let span = statement.source_info.span; Rvalue::Use(mem::replace(operand, promoted_operand(ty, span))) } _ => bug!(), } } Candidate::Argument { bb, index } => { let terminator = blocks[bb].terminator_mut(); match terminator.kind { TerminatorKind::Call { ref mut args, .. } => { let ty = args[index].ty(local_decls, self.tcx); let span = terminator.source_info.span; Rvalue::Use(mem::replace(&mut args[index], promoted_operand(ty, span))) } // We expected a `TerminatorKind::Call` for which we'd like to promote an // argument. `qualify_consts` saw a `TerminatorKind::Call` here, but // we are seeing a `Goto`. That means that the `promote_temps` method // already promoted this call away entirely. This case occurs when calling // a function requiring a constant argument and as that constant value // providing a value whose computation contains another call to a function // requiring a constant argument. TerminatorKind::Goto { .. } => return None, _ => bug!(), } } Candidate::InlineAsm { bb, index } => { let terminator = blocks[bb].terminator_mut(); match terminator.kind { TerminatorKind::InlineAsm { ref mut operands, .. } => { match &mut operands[index] { InlineAsmOperand::Const { ref mut value } => { let ty = value.ty(local_decls, self.tcx); let span = terminator.source_info.span; Rvalue::Use(mem::replace(value, promoted_operand(ty, span))) } _ => bug!(), } } _ => bug!(), } } } }; assert_eq!(self.new_block(), START_BLOCK); self.visit_rvalue( &mut rvalue, Location { block: BasicBlock::new(0), statement_index: usize::MAX }, ); let span = self.promoted.span; self.assign(RETURN_PLACE, rvalue, span); Some(self.promoted) } } /// Replaces all temporaries with their promoted counterparts. impl<'a, 'tcx> MutVisitor<'tcx> for Promoter<'a, 'tcx> { fn tcx(&self) -> TyCtxt<'tcx> { self.tcx } fn visit_local(&mut self, local: &mut Local, _: PlaceContext, _: Location) { if self.is_temp_kind(*local) { *local = self.promote_temp(*local); } } } pub fn promote_candidates<'tcx>( body: &mut Body<'tcx>, tcx: TyCtxt<'tcx>, mut temps: IndexVec, candidates: Vec, ) -> IndexVec> { // Visit candidates in reverse, in case they're nested. debug!("promote_candidates({:?})", candidates); let mut promotions = IndexVec::new(); let mut extra_statements = vec![]; for candidate in candidates.into_iter().rev() { match candidate { Candidate::Repeat(Location { block, statement_index }) | Candidate::Ref(Location { block, statement_index }) => { if let StatementKind::Assign(box (place, _)) = &body[block].statements[statement_index].kind { if let Some(local) = place.as_local() { if temps[local] == TempState::PromotedOut { // Already promoted. continue; } } } } Candidate::Argument { .. } | Candidate::InlineAsm { .. } => {} } // Declare return place local so that `mir::Body::new` doesn't complain. let initial_locals = iter::once(LocalDecl::new(tcx.types.never, body.span)).collect(); let mut scope = body.source_scopes[candidate.source_info(body).scope].clone(); scope.parent_scope = None; let promoted = Body::new( body.source, // `promoted` gets filled in below IndexVec::new(), IndexVec::from_elem_n(scope, 1), initial_locals, IndexVec::new(), 0, vec![], body.span, body.generator_kind, ); let promoter = Promoter { promoted, tcx, source: body, temps: &mut temps, extra_statements: &mut extra_statements, keep_original: false, }; //FIXME(oli-obk): having a `maybe_push()` method on `IndexVec` might be nice if let Some(mut promoted) = promoter.promote_candidate(candidate, promotions.len()) { promoted.source.promoted = Some(promotions.next_index()); promotions.push(promoted); } } // Insert each of `extra_statements` before its indicated location, which // has to be done in reverse location order, to not invalidate the rest. extra_statements.sort_by_key(|&(loc, _)| cmp::Reverse(loc)); for (loc, statement) in extra_statements { body[loc.block].statements.insert(loc.statement_index, statement); } // Eliminate assignments to, and drops of promoted temps. let promoted = |index: Local| temps[index] == TempState::PromotedOut; for block in body.basic_blocks_mut() { block.statements.retain(|statement| match &statement.kind { StatementKind::Assign(box (place, _)) => { if let Some(index) = place.as_local() { !promoted(index) } else { true } } StatementKind::StorageLive(index) | StatementKind::StorageDead(index) => { !promoted(*index) } _ => true, }); let terminator = block.terminator_mut(); if let TerminatorKind::Drop { place, target, .. } = &terminator.kind { if let Some(index) = place.as_local() { if promoted(index) { terminator.kind = TerminatorKind::Goto { target: *target }; } } } } promotions } /// This function returns `true` if the `const_in_array_repeat_expressions` feature attribute should /// be suggested. This function is probably quite expensive, it shouldn't be run in the happy path. /// Feature attribute should be suggested if `operand` can be promoted and the feature is not /// enabled. crate fn should_suggest_const_in_array_repeat_expressions_attribute<'tcx>( ccx: &ConstCx<'_, 'tcx>, operand: &Operand<'tcx>, ) -> bool { let mut rpo = traversal::reverse_postorder(&ccx.body); let (temps, _) = collect_temps_and_candidates(&ccx, &mut rpo); let validator = Validator { ccx, temps: &temps, explicit: false }; let should_promote = validator.validate_operand(operand).is_ok(); let feature_flag = validator.ccx.tcx.features().const_in_array_repeat_expressions; debug!( "should_suggest_const_in_array_repeat_expressions_flag: def_id={:?} \ should_promote={:?} feature_flag={:?}", validator.ccx.def_id(), should_promote, feature_flag ); should_promote && !feature_flag }