use core::ops::ControlFlow; use rustc_abi::{FieldIdx, VariantIdx}; use rustc_apfloat::Float; use rustc_data_structures::fx::FxHashSet; use rustc_errors::Diag; use rustc_hir as hir; use rustc_hir::attrs::AttributeKind; use rustc_hir::find_attr; use rustc_index::Idx; use rustc_infer::infer::TyCtxtInferExt; use rustc_infer::traits::Obligation; use rustc_middle::mir::interpret::ErrorHandled; use rustc_middle::span_bug; use rustc_middle::thir::{FieldPat, Pat, PatKind}; use rustc_middle::ty::{ self, Ty, TyCtxt, TypeSuperVisitable, TypeVisitableExt, TypeVisitor, ValTree, }; use rustc_span::def_id::DefId; use rustc_span::{DUMMY_SP, Span}; use rustc_trait_selection::traits::ObligationCause; use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt; use tracing::{debug, instrument, trace}; use super::PatCtxt; use crate::errors::{ ConstPatternDependsOnGenericParameter, CouldNotEvalConstPattern, InvalidPattern, NaNPattern, PointerPattern, TypeNotPartialEq, TypeNotStructural, UnionPattern, UnsizedPattern, }; impl<'a, 'tcx> PatCtxt<'a, 'tcx> { /// Converts a constant to a pattern (if possible). /// This means aggregate values (like structs and enums) are converted /// to a pattern that matches the value (as if you'd compared via structural equality). /// /// Only type system constants are supported, as we are using valtrees /// as an intermediate step. Unfortunately those don't carry a type /// so we have to carry one ourselves. #[instrument(level = "debug", skip(self), ret)] pub(super) fn const_to_pat( &self, c: ty::Const<'tcx>, ty: Ty<'tcx>, id: hir::HirId, span: Span, ) -> Box> { let mut convert = ConstToPat::new(self, id, span, c); match c.kind() { ty::ConstKind::Unevaluated(uv) => convert.unevaluated_to_pat(uv, ty), ty::ConstKind::Value(cv) => convert.valtree_to_pat(cv.valtree, cv.ty), _ => span_bug!(span, "Invalid `ConstKind` for `const_to_pat`: {:?}", c), } } } struct ConstToPat<'tcx> { tcx: TyCtxt<'tcx>, typing_env: ty::TypingEnv<'tcx>, span: Span, id: hir::HirId, c: ty::Const<'tcx>, } impl<'tcx> ConstToPat<'tcx> { fn new(pat_ctxt: &PatCtxt<'_, 'tcx>, id: hir::HirId, span: Span, c: ty::Const<'tcx>) -> Self { trace!(?pat_ctxt.typeck_results.hir_owner); ConstToPat { tcx: pat_ctxt.tcx, typing_env: pat_ctxt.typing_env, span, id, c } } fn type_marked_structural(&self, ty: Ty<'tcx>) -> bool { ty.is_structural_eq_shallow(self.tcx) } /// We errored. Signal that in the pattern, so that follow up errors can be silenced. fn mk_err(&self, mut err: Diag<'_>, ty: Ty<'tcx>) -> Box> { if let ty::ConstKind::Unevaluated(uv) = self.c.kind() { let def_kind = self.tcx.def_kind(uv.def); if let hir::def::DefKind::AssocConst = def_kind && let Some(def_id) = uv.def.as_local() { // Include the container item in the output. err.span_label(self.tcx.def_span(self.tcx.local_parent(def_id)), ""); } if let hir::def::DefKind::Const | hir::def::DefKind::AssocConst = def_kind { err.span_label( self.tcx.def_span(uv.def), crate::fluent_generated::mir_build_const_defined_here, ); } } Box::new(Pat { span: self.span, ty, kind: PatKind::Error(err.emit()) }) } fn unevaluated_to_pat( &mut self, uv: ty::UnevaluatedConst<'tcx>, ty: Ty<'tcx>, ) -> Box> { // It's not *technically* correct to be revealing opaque types here as borrowcheck has // not run yet. However, CTFE itself uses `TypingMode::PostAnalysis` unconditionally even // during typeck and not doing so has a lot of (undesirable) fallout (#101478, #119821). // As a result we always use a revealed env when resolving the instance to evaluate. // // FIXME: `const_eval_resolve_for_typeck` should probably just modify the env itself // instead of having this logic here let typing_env = self .tcx .erase_and_anonymize_regions(self.typing_env) .with_post_analysis_normalized(self.tcx); let uv = self.tcx.erase_and_anonymize_regions(uv); // try to resolve e.g. associated constants to their definition on an impl, and then // evaluate the const. let valtree = match self.tcx.const_eval_resolve_for_typeck(typing_env, uv, self.span) { Ok(Ok(c)) => c, Err(ErrorHandled::Reported(_, _)) => { // Let's tell the use where this failing const occurs. let mut err = self.tcx.dcx().create_err(CouldNotEvalConstPattern { span: self.span }); // We've emitted an error on the original const, it would be redundant to complain // on its use as well. if let ty::ConstKind::Unevaluated(uv) = self.c.kind() && let hir::def::DefKind::Const | hir::def::DefKind::AssocConst = self.tcx.def_kind(uv.def) { err.downgrade_to_delayed_bug(); } return self.mk_err(err, ty); } Err(ErrorHandled::TooGeneric(_)) => { let mut e = self .tcx .dcx() .create_err(ConstPatternDependsOnGenericParameter { span: self.span }); for arg in uv.args { if let ty::GenericArgKind::Type(ty) = arg.kind() && let ty::Param(param_ty) = ty.kind() { let def_id = self.tcx.hir_enclosing_body_owner(self.id); let generics = self.tcx.generics_of(def_id); let param = generics.type_param(*param_ty, self.tcx); let span = self.tcx.def_span(param.def_id); e.span_label(span, "constant depends on this generic parameter"); if let Some(ident) = self.tcx.def_ident_span(def_id) && self.tcx.sess.source_map().is_multiline(ident.between(span)) { // Display the `fn` name as well in the diagnostic, as the generic isn't // in the same line and it could be confusing otherwise. e.span_label(ident, ""); } } } return self.mk_err(e, ty); } Ok(Err(bad_ty)) => { // The pattern cannot be turned into a valtree. let e = match bad_ty.kind() { ty::Adt(def, ..) => { assert!(def.is_union()); self.tcx.dcx().create_err(UnionPattern { span: self.span }) } ty::FnPtr(..) | ty::RawPtr(..) => { self.tcx.dcx().create_err(PointerPattern { span: self.span }) } _ => self.tcx.dcx().create_err(InvalidPattern { span: self.span, non_sm_ty: bad_ty, prefix: bad_ty.prefix_string(self.tcx).to_string(), }), }; return self.mk_err(e, ty); } }; // Convert the valtree to a const. let inlined_const_as_pat = self.valtree_to_pat(valtree, ty); if !inlined_const_as_pat.references_error() { // Always check for `PartialEq` if we had no other errors yet. if !type_has_partial_eq_impl(self.tcx, typing_env, ty).has_impl { let mut err = self.tcx.dcx().create_err(TypeNotPartialEq { span: self.span, ty }); extend_type_not_partial_eq(self.tcx, typing_env, ty, &mut err); return self.mk_err(err, ty); } } // Wrap the pattern in a marker node to indicate that it is the result of lowering a // constant. This is used for diagnostics, and for unsafety checking of inline const blocks. let kind = PatKind::ExpandedConstant { subpattern: inlined_const_as_pat, def_id: uv.def }; Box::new(Pat { kind, ty, span: self.span }) } fn field_pats( &self, vals: impl Iterator, Ty<'tcx>)>, ) -> Vec> { vals.enumerate() .map(|(idx, (val, ty))| { let field = FieldIdx::new(idx); // Patterns can only use monomorphic types. let ty = self.tcx.normalize_erasing_regions(self.typing_env, ty); FieldPat { field, pattern: *self.valtree_to_pat(val, ty) } }) .collect() } // Recursive helper for `to_pat`; invoke that (instead of calling this directly). // FIXME(valtrees): Accept `ty::Value` instead of `Ty` and `ty::ValTree` separately. #[instrument(skip(self), level = "debug")] fn valtree_to_pat(&self, cv: ValTree<'tcx>, ty: Ty<'tcx>) -> Box> { let span = self.span; let tcx = self.tcx; let kind = match ty.kind() { ty::Adt(adt_def, _) if !self.type_marked_structural(ty) => { // Extremely important check for all ADTs! Make sure they opted-in to be used in // patterns. debug!("adt_def {:?} has !type_marked_structural for cv.ty: {:?}", adt_def, ty); let PartialEqImplStatus { is_derived, structural_partial_eq, non_blanket_impl, .. } = type_has_partial_eq_impl(self.tcx, self.typing_env, ty); let (manual_partialeq_impl_span, manual_partialeq_impl_note) = match (structural_partial_eq, non_blanket_impl) { (true, _) => (None, false), (_, Some(def_id)) if def_id.is_local() && !is_derived => { (Some(tcx.def_span(def_id)), false) } _ => (None, true), }; let ty_def_span = tcx.def_span(adt_def.did()); let err = TypeNotStructural { span, ty, ty_def_span, manual_partialeq_impl_span, manual_partialeq_impl_note, }; return self.mk_err(tcx.dcx().create_err(err), ty); } ty::Adt(adt_def, args) if adt_def.is_enum() => { let (&variant_index, fields) = cv.unwrap_branch().split_first().unwrap(); let variant_index = VariantIdx::from_u32(variant_index.unwrap_leaf().to_u32()); PatKind::Variant { adt_def: *adt_def, args, variant_index, subpatterns: self.field_pats( fields.iter().copied().zip( adt_def.variants()[variant_index] .fields .iter() .map(|field| field.ty(tcx, args)), ), ), } } ty::Adt(def, args) => { assert!(!def.is_union()); // Valtree construction would never succeed for unions. PatKind::Leaf { subpatterns: self.field_pats(cv.unwrap_branch().iter().copied().zip( def.non_enum_variant().fields.iter().map(|field| field.ty(tcx, args)), )), } } ty::Tuple(fields) => PatKind::Leaf { subpatterns: self.field_pats(cv.unwrap_branch().iter().copied().zip(fields.iter())), }, ty::Slice(elem_ty) => PatKind::Slice { prefix: cv .unwrap_branch() .iter() .map(|val| *self.valtree_to_pat(*val, *elem_ty)) .collect(), slice: None, suffix: Box::new([]), }, ty::Array(elem_ty, _) => PatKind::Array { prefix: cv .unwrap_branch() .iter() .map(|val| *self.valtree_to_pat(*val, *elem_ty)) .collect(), slice: None, suffix: Box::new([]), }, ty::Str => { // String literal patterns may have type `str` if `deref_patterns` is enabled, in // order to allow `deref!("..."): String`. Since we need a `&str` for the comparison // when lowering to MIR in `Builder::perform_test`, treat the constant as a `&str`. // This works because `str` and `&str` have the same valtree representation. let ref_str_ty = Ty::new_imm_ref(tcx, tcx.lifetimes.re_erased, ty); PatKind::Constant { value: ty::Value { ty: ref_str_ty, valtree: cv } } } ty::Ref(_, pointee_ty, ..) => match *pointee_ty.kind() { // `&str` is represented as a valtree, let's keep using this // optimization for now. ty::Str => PatKind::Constant { value: ty::Value { ty, valtree: cv } }, // All other references are converted into deref patterns and then recursively // convert the dereferenced constant to a pattern that is the sub-pattern of the // deref pattern. _ => { if !pointee_ty.is_sized(tcx, self.typing_env) && !pointee_ty.is_slice() { return self.mk_err( tcx.dcx().create_err(UnsizedPattern { span, non_sm_ty: *pointee_ty }), ty, ); } else { // References have the same valtree representation as their pointee. PatKind::Deref { subpattern: self.valtree_to_pat(cv, *pointee_ty) } } } }, ty::Float(flt) => { let v = cv.unwrap_leaf(); let is_nan = match flt { ty::FloatTy::F16 => v.to_f16().is_nan(), ty::FloatTy::F32 => v.to_f32().is_nan(), ty::FloatTy::F64 => v.to_f64().is_nan(), ty::FloatTy::F128 => v.to_f128().is_nan(), }; if is_nan { // NaNs are not ever equal to anything so they make no sense as patterns. // Also see . return self.mk_err(tcx.dcx().create_err(NaNPattern { span }), ty); } else { PatKind::Constant { value: ty::Value { ty, valtree: cv } } } } ty::Pat(..) | ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::RawPtr(..) => { // The raw pointers we see here have been "vetted" by valtree construction to be // just integers, so we simply allow them. PatKind::Constant { value: ty::Value { ty, valtree: cv } } } ty::FnPtr(..) => { unreachable!( "Valtree construction would never succeed for FnPtr, so this is unreachable." ) } _ => { let err = InvalidPattern { span, non_sm_ty: ty, prefix: ty.prefix_string(tcx).to_string(), }; return self.mk_err(tcx.dcx().create_err(err), ty); } }; Box::new(Pat { span, ty, kind }) } } /// Given a type with type parameters, visit every ADT looking for types that need to /// `#[derive(PartialEq)]` for it to be a structural type. fn extend_type_not_partial_eq<'tcx>( tcx: TyCtxt<'tcx>, typing_env: ty::TypingEnv<'tcx>, ty: Ty<'tcx>, err: &mut Diag<'_>, ) { /// Collect all types that need to be `StructuralPartialEq`. struct UsedParamsNeedInstantiationVisitor<'tcx> { tcx: TyCtxt<'tcx>, typing_env: ty::TypingEnv<'tcx>, /// The user has written `impl PartialEq for Ty` which means it's non-structural. adts_with_manual_partialeq: FxHashSet, /// The type has no `PartialEq` implementation, neither manual or derived. adts_without_partialeq: FxHashSet, /// The user has written `impl PartialEq for Ty` which means it's non-structural, /// but we don't have a span to point at, so we'll just add them as a `note`. manual: FxHashSet>, /// The type has no `PartialEq` implementation, neither manual or derived, but /// we don't have a span to point at, so we'll just add them as a `note`. without: FxHashSet>, } impl<'tcx> TypeVisitor> for UsedParamsNeedInstantiationVisitor<'tcx> { type Result = ControlFlow<()>; fn visit_ty(&mut self, ty: Ty<'tcx>) -> Self::Result { match ty.kind() { ty::Dynamic(..) => return ControlFlow::Break(()), // Unsafe binders never implement `PartialEq`, so avoid walking into them // which would require instantiating its binder with placeholders too. ty::UnsafeBinder(..) => return ControlFlow::Break(()), ty::FnPtr(..) => return ControlFlow::Continue(()), ty::Adt(def, _args) => { let ty_def_id = def.did(); let ty_def_span = self.tcx.def_span(ty_def_id); let PartialEqImplStatus { has_impl, is_derived, structural_partial_eq, non_blanket_impl, } = type_has_partial_eq_impl(self.tcx, self.typing_env, ty); match (has_impl, is_derived, structural_partial_eq, non_blanket_impl) { (_, _, true, _) => {} (true, false, _, Some(def_id)) if def_id.is_local() => { self.adts_with_manual_partialeq.insert(self.tcx.def_span(def_id)); } (true, false, _, _) if ty_def_id.is_local() => { self.adts_with_manual_partialeq.insert(ty_def_span); } (false, _, _, _) if ty_def_id.is_local() => { self.adts_without_partialeq.insert(ty_def_span); } (true, false, _, _) => { self.manual.insert(ty); } (false, _, _, _) => { self.without.insert(ty); } _ => {} }; ty.super_visit_with(self) } _ => ty.super_visit_with(self), } } } let mut v = UsedParamsNeedInstantiationVisitor { tcx, typing_env, adts_with_manual_partialeq: FxHashSet::default(), adts_without_partialeq: FxHashSet::default(), manual: FxHashSet::default(), without: FxHashSet::default(), }; if v.visit_ty(ty).is_break() { return; } #[allow(rustc::potential_query_instability)] // Span labels will be sorted by the rendering for span in v.adts_with_manual_partialeq { err.span_note(span, "the `PartialEq` trait must be derived, manual `impl`s are not sufficient; see https://doc.rust-lang.org/stable/std/marker/trait.StructuralPartialEq.html for details"); } #[allow(rustc::potential_query_instability)] // Span labels will be sorted by the rendering for span in v.adts_without_partialeq { err.span_label( span, "must be annotated with `#[derive(PartialEq)]` to be usable in patterns", ); } #[allow(rustc::potential_query_instability)] let mut manual: Vec<_> = v.manual.into_iter().map(|t| t.to_string()).collect(); manual.sort(); for ty in manual { err.note(format!( "`{ty}` must be annotated with `#[derive(PartialEq)]` to be usable in patterns, manual `impl`s are not sufficient; see https://doc.rust-lang.org/stable/std/marker/trait.StructuralPartialEq.html for details" )); } #[allow(rustc::potential_query_instability)] let mut without: Vec<_> = v.without.into_iter().map(|t| t.to_string()).collect(); without.sort(); for ty in without { err.note(format!( "`{ty}` must be annotated with `#[derive(PartialEq)]` to be usable in patterns" )); } } #[derive(Debug)] struct PartialEqImplStatus { has_impl: bool, is_derived: bool, structural_partial_eq: bool, non_blanket_impl: Option, } #[instrument(level = "trace", skip(tcx), ret)] fn type_has_partial_eq_impl<'tcx>( tcx: TyCtxt<'tcx>, typing_env: ty::TypingEnv<'tcx>, ty: Ty<'tcx>, ) -> PartialEqImplStatus { let (infcx, param_env) = tcx.infer_ctxt().build_with_typing_env(typing_env); // double-check there even *is* a semantic `PartialEq` to dispatch to. // // (If there isn't, then we can safely issue a hard // error, because that's never worked, due to compiler // using `PartialEq::eq` in this scenario in the past.) let partial_eq_trait_id = tcx.require_lang_item(hir::LangItem::PartialEq, DUMMY_SP); let structural_partial_eq_trait_id = tcx.require_lang_item(hir::LangItem::StructuralPeq, DUMMY_SP); let partial_eq_obligation = Obligation::new( tcx, ObligationCause::dummy(), param_env, ty::TraitRef::new(tcx, partial_eq_trait_id, [ty, ty]), ); let mut automatically_derived = false; let mut structural_peq = false; let mut impl_def_id = None; for def_id in tcx.non_blanket_impls_for_ty(partial_eq_trait_id, ty) { automatically_derived = find_attr!(tcx.get_all_attrs(def_id), AttributeKind::AutomaticallyDerived(..)); impl_def_id = Some(def_id); } for _ in tcx.non_blanket_impls_for_ty(structural_partial_eq_trait_id, ty) { structural_peq = true; } // This *could* accept a type that isn't actually `PartialEq`, because region bounds get // ignored. However that should be pretty much impossible since consts that do not depend on // generics can only mention the `'static` lifetime, and how would one have a type that's // `PartialEq` for some lifetime but *not* for `'static`? If this ever becomes a problem // we'll need to leave some sort of trace of this requirement in the MIR so that borrowck // can ensure that the type really implements `PartialEq`. // We also do *not* require `const PartialEq`, not even in `const fn`. This violates the model // that patterns can only do things that the code could also do without patterns, but it is // needed for backwards compatibility. The actual pattern matching compares primitive values, // `PartialEq::eq` never gets invoked, so there's no risk of us running non-const code. PartialEqImplStatus { has_impl: infcx.predicate_must_hold_modulo_regions(&partial_eq_obligation), is_derived: automatically_derived, structural_partial_eq: structural_peq, non_blanket_impl: impl_def_id, } }