use rustc_index::bit_set::DenseBitSet; use rustc_middle::mir::visit::{MutatingUseContext, NonMutatingUseContext, PlaceContext, Visitor}; use rustc_middle::mir::{ self, CallReturnPlaces, Local, Location, Place, StatementKind, TerminatorEdges, }; use crate::{Analysis, Backward, GenKill}; /// A [live-variable dataflow analysis][liveness]. /// /// This analysis considers references as being used only at the point of the /// borrow. In other words, this analysis does not track uses because of references that already /// exist. See [this `mir-dataflow` test][flow-test] for an example. You almost never want to use /// this analysis without also looking at the results of [`MaybeBorrowedLocals`]. /// /// ## Field-(in)sensitivity /// /// As the name suggests, this analysis is field insensitive. If a projection of a variable `x` is /// assigned to (e.g. `x.0 = 42`), it does not "define" `x` as far as liveness is concerned. In fact, /// such an assignment is currently marked as a "use" of `x` in an attempt to be maximally /// conservative. /// /// [`MaybeBorrowedLocals`]: super::MaybeBorrowedLocals /// [flow-test]: https://github.com/rust-lang/rust/blob/a08c47310c7d49cbdc5d7afb38408ba519967ecd/src/test/ui/mir-dataflow/liveness-ptr.rs /// [liveness]: https://en.wikipedia.org/wiki/Live_variable_analysis pub struct MaybeLiveLocals; impl<'tcx> Analysis<'tcx> for MaybeLiveLocals { type Domain = DenseBitSet; type Direction = Backward; const NAME: &'static str = "liveness"; fn bottom_value(&self, body: &mir::Body<'tcx>) -> Self::Domain { // bottom = not live DenseBitSet::new_empty(body.local_decls.len()) } fn initialize_start_block(&self, _: &mir::Body<'tcx>, _: &mut Self::Domain) { // No variables are live until we observe a use } fn apply_primary_statement_effect( &mut self, state: &mut Self::Domain, statement: &mir::Statement<'tcx>, location: Location, ) { TransferFunction(state).visit_statement(statement, location); } fn apply_primary_terminator_effect<'mir>( &mut self, state: &mut Self::Domain, terminator: &'mir mir::Terminator<'tcx>, location: Location, ) -> TerminatorEdges<'mir, 'tcx> { TransferFunction(state).visit_terminator(terminator, location); terminator.edges() } fn apply_call_return_effect( &mut self, state: &mut Self::Domain, _block: mir::BasicBlock, return_places: CallReturnPlaces<'_, 'tcx>, ) { if let CallReturnPlaces::Yield(resume_place) = return_places { YieldResumeEffect(state).visit_place( &resume_place, PlaceContext::MutatingUse(MutatingUseContext::Yield), Location::START, ) } else { return_places.for_each(|place| { if let Some(local) = place.as_local() { state.kill(local); } }); } } } pub struct TransferFunction<'a>(pub &'a mut DenseBitSet); impl<'tcx> Visitor<'tcx> for TransferFunction<'_> { fn visit_place(&mut self, place: &mir::Place<'tcx>, context: PlaceContext, location: Location) { if let PlaceContext::MutatingUse(MutatingUseContext::Yield) = context { // The resume place is evaluated and assigned to only after coroutine resumes, so its // effect is handled separately in `call_resume_effect`. return; } match DefUse::for_place(*place, context) { DefUse::Def => { if let PlaceContext::MutatingUse( MutatingUseContext::Call | MutatingUseContext::AsmOutput, ) = context { // For the associated terminators, this is only a `Def` when the terminator // returns "successfully." As such, we handle this case separately in // `call_return_effect` above. However, if the place looks like `*_5`, this is // still unconditionally a use of `_5`. } else { self.0.kill(place.local); } } DefUse::Use => self.0.gen_(place.local), DefUse::PartialWrite | DefUse::NonUse => {} } self.visit_projection(place.as_ref(), context, location); } fn visit_local(&mut self, local: Local, context: PlaceContext, _: Location) { DefUse::apply(self.0, local.into(), context); } } struct YieldResumeEffect<'a>(&'a mut DenseBitSet); impl<'tcx> Visitor<'tcx> for YieldResumeEffect<'_> { fn visit_place(&mut self, place: &mir::Place<'tcx>, context: PlaceContext, location: Location) { DefUse::apply(self.0, *place, context); self.visit_projection(place.as_ref(), context, location); } fn visit_local(&mut self, local: Local, context: PlaceContext, _: Location) { DefUse::apply(self.0, local.into(), context); } } #[derive(Eq, PartialEq, Clone)] pub enum DefUse { /// Full write to the local. Def, /// Read of any part of the local. Use, /// Partial write to the local. PartialWrite, /// Non-use, like debuginfo. NonUse, } impl DefUse { fn apply(state: &mut DenseBitSet, place: Place<'_>, context: PlaceContext) { match DefUse::for_place(place, context) { DefUse::Def => state.kill(place.local), DefUse::Use => state.gen_(place.local), DefUse::PartialWrite | DefUse::NonUse => {} } } pub fn for_place(place: Place<'_>, context: PlaceContext) -> DefUse { match context { PlaceContext::NonUse(_) => DefUse::NonUse, PlaceContext::MutatingUse( MutatingUseContext::Call | MutatingUseContext::Yield | MutatingUseContext::AsmOutput | MutatingUseContext::Store | MutatingUseContext::Deinit, ) => { // Treat derefs as a use of the base local. `*p = 4` is not a def of `p` but a use. if place.is_indirect() { DefUse::Use } else if place.projection.is_empty() { DefUse::Def } else { DefUse::PartialWrite } } // Setting the discriminant is not a use because it does no reading, but it is also not // a def because it does not overwrite the whole place PlaceContext::MutatingUse(MutatingUseContext::SetDiscriminant) => { if place.is_indirect() { DefUse::Use } else { DefUse::PartialWrite } } // All other contexts are uses... PlaceContext::MutatingUse( MutatingUseContext::RawBorrow | MutatingUseContext::Borrow | MutatingUseContext::Drop | MutatingUseContext::Retag, ) | PlaceContext::NonMutatingUse( NonMutatingUseContext::RawBorrow | NonMutatingUseContext::Copy | NonMutatingUseContext::Inspect | NonMutatingUseContext::Move | NonMutatingUseContext::PlaceMention | NonMutatingUseContext::FakeBorrow | NonMutatingUseContext::SharedBorrow, ) => DefUse::Use, PlaceContext::MutatingUse(MutatingUseContext::Projection) | PlaceContext::NonMutatingUse(NonMutatingUseContext::Projection) => { unreachable!("A projection could be a def or a use and must be handled separately") } } } } /// Like `MaybeLiveLocals`, but does not mark locals as live if they are used in a dead assignment. /// /// This is basically written for dead store elimination and nothing else. /// /// All of the caveats of `MaybeLiveLocals` apply. pub struct MaybeTransitiveLiveLocals<'a> { always_live: &'a DenseBitSet, debuginfo_locals: &'a DenseBitSet, } impl<'a> MaybeTransitiveLiveLocals<'a> { /// The `always_alive` set is the set of locals to which all stores should unconditionally be /// considered live. /// /// This should include at least all locals that are ever borrowed. pub fn new( always_live: &'a DenseBitSet, debuginfo_locals: &'a DenseBitSet, ) -> Self { MaybeTransitiveLiveLocals { always_live, debuginfo_locals } } pub fn can_be_removed_if_dead<'tcx>( stmt_kind: &StatementKind<'tcx>, always_live: &DenseBitSet, debuginfo_locals: &'a DenseBitSet, ) -> Option> { // Compute the place that we are storing to, if any let destination = match stmt_kind { StatementKind::Assign(box (place, rvalue)) => (rvalue.is_safe_to_remove() // FIXME: We are not sure how we should represent this debugging information for some statements, // keep it for now. && (!debuginfo_locals.contains(place.local) || (place.as_local().is_some() && stmt_kind.as_debuginfo().is_some()))) .then_some(*place), StatementKind::SetDiscriminant { place, .. } | StatementKind::Deinit(place) => { (!debuginfo_locals.contains(place.local)).then_some(**place) } StatementKind::FakeRead(_) | StatementKind::StorageLive(_) | StatementKind::StorageDead(_) | StatementKind::Retag(..) | StatementKind::AscribeUserType(..) | StatementKind::PlaceMention(..) | StatementKind::Coverage(..) | StatementKind::Intrinsic(..) | StatementKind::ConstEvalCounter | StatementKind::BackwardIncompatibleDropHint { .. } | StatementKind::Nop => None, }; if let Some(destination) = destination && !destination.is_indirect() && !always_live.contains(destination.local) { return Some(destination); } None } } impl<'a, 'tcx> Analysis<'tcx> for MaybeTransitiveLiveLocals<'a> { type Domain = DenseBitSet; type Direction = Backward; const NAME: &'static str = "transitive liveness"; fn bottom_value(&self, body: &mir::Body<'tcx>) -> Self::Domain { // bottom = not live DenseBitSet::new_empty(body.local_decls.len()) } fn initialize_start_block(&self, _: &mir::Body<'tcx>, _: &mut Self::Domain) { // No variables are live until we observe a use } fn apply_primary_statement_effect( &mut self, state: &mut Self::Domain, statement: &mir::Statement<'tcx>, location: Location, ) { if let Some(destination) = Self::can_be_removed_if_dead(&statement.kind, &self.always_live, &self.debuginfo_locals) && !state.contains(destination.local) { // This store is dead return; } TransferFunction(state).visit_statement(statement, location); } fn apply_primary_terminator_effect<'mir>( &mut self, state: &mut Self::Domain, terminator: &'mir mir::Terminator<'tcx>, location: Location, ) -> TerminatorEdges<'mir, 'tcx> { TransferFunction(state).visit_terminator(terminator, location); terminator.edges() } fn apply_call_return_effect( &mut self, state: &mut Self::Domain, _block: mir::BasicBlock, return_places: CallReturnPlaces<'_, 'tcx>, ) { if let CallReturnPlaces::Yield(resume_place) = return_places { YieldResumeEffect(state).visit_place( &resume_place, PlaceContext::MutatingUse(MutatingUseContext::Yield), Location::START, ) } else { return_places.for_each(|place| { if let Some(local) = place.as_local() { state.remove(local); } }); } } }