mod counters; mod graph; mod mappings; pub(super) mod query; mod spans; #[cfg(test)] mod tests; mod unexpand; use rustc_hir as hir; use rustc_hir::intravisit::{Visitor, walk_expr}; use rustc_middle::hir::nested_filter; use rustc_middle::mir::coverage::{CoverageKind, FunctionCoverageInfo, Mapping, MappingKind}; use rustc_middle::mir::{self, BasicBlock, Statement, StatementKind, TerminatorKind}; use rustc_middle::ty::TyCtxt; use rustc_span::Span; use rustc_span::def_id::LocalDefId; use tracing::{debug, debug_span, trace}; use crate::coverage::counters::BcbCountersData; use crate::coverage::graph::CoverageGraph; use crate::coverage::mappings::ExtractedMappings; /// Inserts `StatementKind::Coverage` statements that either instrument the binary with injected /// counters, via intrinsic `llvm.instrprof.increment`, and/or inject metadata used during codegen /// to construct the coverage map. pub(super) struct InstrumentCoverage; impl<'tcx> crate::MirPass<'tcx> for InstrumentCoverage { fn is_enabled(&self, sess: &rustc_session::Session) -> bool { sess.instrument_coverage() } fn run_pass(&self, tcx: TyCtxt<'tcx>, mir_body: &mut mir::Body<'tcx>) { let mir_source = mir_body.source; // This pass runs after MIR promotion, but before promoted MIR starts to // be transformed, so it should never see promoted MIR. assert!(mir_source.promoted.is_none()); let def_id = mir_source.def_id().expect_local(); if !tcx.is_eligible_for_coverage(def_id) { trace!("InstrumentCoverage skipped for {def_id:?} (not eligible)"); return; } // An otherwise-eligible function is still skipped if its start block // is known to be unreachable. match mir_body.basic_blocks[mir::START_BLOCK].terminator().kind { TerminatorKind::Unreachable => { trace!("InstrumentCoverage skipped for unreachable `START_BLOCK`"); return; } _ => {} } instrument_function_for_coverage(tcx, mir_body); } fn is_required(&self) -> bool { false } } fn instrument_function_for_coverage<'tcx>(tcx: TyCtxt<'tcx>, mir_body: &mut mir::Body<'tcx>) { let def_id = mir_body.source.def_id(); let _span = debug_span!("instrument_function_for_coverage", ?def_id).entered(); let hir_info = extract_hir_info(tcx, def_id.expect_local()); // Build the coverage graph, which is a simplified view of the MIR control-flow // graph that ignores some details not relevant to coverage instrumentation. let graph = CoverageGraph::from_mir(mir_body); //////////////////////////////////////////////////// // Extract coverage spans and other mapping info from MIR. let extracted_mappings = mappings::extract_all_mapping_info_from_mir(tcx, mir_body, &hir_info, &graph); let mappings = create_mappings(&extracted_mappings); if mappings.is_empty() { // No spans could be converted into valid mappings, so skip this function. debug!("no spans could be converted into valid mappings; skipping"); return; } // Use the coverage graph to prepare intermediate data that will eventually // be used to assign physical counters and counter expressions to points in // the control-flow graph. let BcbCountersData { node_flow_data, priority_list } = counters::prepare_bcb_counters_data(&graph); // Inject coverage statements into MIR. inject_coverage_statements(mir_body, &graph); mir_body.function_coverage_info = Some(Box::new(FunctionCoverageInfo { function_source_hash: hir_info.function_source_hash, node_flow_data, priority_list, mappings, })); } /// For each coverage span extracted from MIR, create a corresponding mapping. /// /// FIXME(Zalathar): This used to be where BCBs in the extracted mappings were /// resolved to a `CovTerm`. But that is now handled elsewhere, so this /// function can potentially be simplified even further. fn create_mappings(extracted_mappings: &ExtractedMappings) -> Vec { // Fully destructure the mappings struct to make sure we don't miss any kinds. let ExtractedMappings { code_mappings, branch_pairs } = extracted_mappings; let mut mappings = Vec::new(); mappings.extend(code_mappings.iter().map( // Ordinary code mappings are the simplest kind. |&mappings::CodeMapping { span, bcb }| { let kind = MappingKind::Code { bcb }; Mapping { kind, span } }, )); mappings.extend(branch_pairs.iter().map( |&mappings::BranchPair { span, true_bcb, false_bcb }| { let kind = MappingKind::Branch { true_bcb, false_bcb }; Mapping { kind, span } }, )); mappings } /// Inject any necessary coverage statements into MIR, so that they influence codegen. fn inject_coverage_statements<'tcx>(mir_body: &mut mir::Body<'tcx>, graph: &CoverageGraph) { for (bcb, data) in graph.iter_enumerated() { let target_bb = data.leader_bb(); inject_statement(mir_body, CoverageKind::VirtualCounter { bcb }, target_bb); } } fn inject_statement(mir_body: &mut mir::Body<'_>, counter_kind: CoverageKind, bb: BasicBlock) { debug!(" injecting statement {counter_kind:?} for {bb:?}"); let data = &mut mir_body[bb]; let source_info = data.terminator().source_info; let statement = Statement::new(source_info, StatementKind::Coverage(counter_kind)); data.statements.insert(0, statement); } /// Function information extracted from HIR by the coverage instrumentor. #[derive(Debug)] struct ExtractedHirInfo { function_source_hash: u64, is_async_fn: bool, /// The span of the function's signature, if available. /// Must have the same context and filename as the body span. fn_sig_span: Option, body_span: Span, /// "Holes" are regions within the function body (or its expansions) that /// should not be included in coverage spans for this function /// (e.g. closures and nested items). hole_spans: Vec, } fn extract_hir_info<'tcx>(tcx: TyCtxt<'tcx>, def_id: LocalDefId) -> ExtractedHirInfo { // FIXME(#79625): Consider improving MIR to provide the information needed, to avoid going back // to HIR for it. // HACK: For synthetic MIR bodies (async closures), use the def id of the HIR body. if tcx.is_synthetic_mir(def_id) { return extract_hir_info(tcx, tcx.local_parent(def_id)); } let hir_node = tcx.hir_node_by_def_id(def_id); let fn_body_id = hir_node.body_id().expect("HIR node is a function with body"); let hir_body = tcx.hir_body(fn_body_id); let maybe_fn_sig = hir_node.fn_sig(); let is_async_fn = maybe_fn_sig.is_some_and(|fn_sig| fn_sig.header.is_async()); let mut body_span = hir_body.value.span; use hir::{Closure, Expr, ExprKind, Node}; // Unexpand a closure's body span back to the context of its declaration. // This helps with closure bodies that consist of just a single bang-macro, // and also with closure bodies produced by async desugaring. if let Node::Expr(&Expr { kind: ExprKind::Closure(&Closure { fn_decl_span, .. }), .. }) = hir_node { body_span = body_span.find_ancestor_in_same_ctxt(fn_decl_span).unwrap_or(body_span); } // The actual signature span is only used if it has the same context and // filename as the body, and precedes the body. let fn_sig_span = maybe_fn_sig.map(|fn_sig| fn_sig.span).filter(|&fn_sig_span| { let source_map = tcx.sess.source_map(); let file_idx = |span: Span| source_map.lookup_source_file_idx(span.lo()); fn_sig_span.eq_ctxt(body_span) && fn_sig_span.hi() <= body_span.lo() && file_idx(fn_sig_span) == file_idx(body_span) }); let function_source_hash = hash_mir_source(tcx, hir_body); let hole_spans = extract_hole_spans_from_hir(tcx, hir_body); ExtractedHirInfo { function_source_hash, is_async_fn, fn_sig_span, body_span, hole_spans } } fn hash_mir_source<'tcx>(tcx: TyCtxt<'tcx>, hir_body: &'tcx hir::Body<'tcx>) -> u64 { // FIXME(cjgillot) Stop hashing HIR manually here. let owner = hir_body.id().hir_id.owner; tcx.hir_owner_nodes(owner).opt_hash_including_bodies.unwrap().to_smaller_hash().as_u64() } fn extract_hole_spans_from_hir<'tcx>(tcx: TyCtxt<'tcx>, hir_body: &hir::Body<'tcx>) -> Vec { struct HolesVisitor<'tcx> { tcx: TyCtxt<'tcx>, hole_spans: Vec, } impl<'tcx> Visitor<'tcx> for HolesVisitor<'tcx> { /// We have special handling for nested items, but we still want to /// traverse into nested bodies of things that are not considered items, /// such as "anon consts" (e.g. array lengths). type NestedFilter = nested_filter::OnlyBodies; fn maybe_tcx(&mut self) -> TyCtxt<'tcx> { self.tcx } /// We override `visit_nested_item` instead of `visit_item` because we /// only need the item's span, not the item itself. fn visit_nested_item(&mut self, id: hir::ItemId) -> Self::Result { let span = self.tcx.def_span(id.owner_id.def_id); self.visit_hole_span(span); // Having visited this item, we don't care about its children, // so don't call `walk_item`. } // We override `visit_expr` instead of the more specific expression // visitors, so that we have direct access to the expression span. fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) { match expr.kind { hir::ExprKind::Closure(_) | hir::ExprKind::ConstBlock(_) => { self.visit_hole_span(expr.span); // Having visited this expression, we don't care about its // children, so don't call `walk_expr`. } // For other expressions, recursively visit as normal. _ => walk_expr(self, expr), } } } impl HolesVisitor<'_> { fn visit_hole_span(&mut self, hole_span: Span) { self.hole_spans.push(hole_span); } } let mut visitor = HolesVisitor { tcx, hole_spans: vec![] }; visitor.visit_body(hir_body); visitor.hole_spans }