use rustc_ast::token::{self, Delimiter, Token}; use rustc_ast::tokenstream::{DelimSpacing, DelimSpan, Spacing, TokenStream, TokenTree}; use rustc_ast_pretty::pprust::token_to_string; use rustc_errors::Diag; use super::diagnostics::{report_suspicious_mismatch_block, same_indentation_level}; use super::{Lexer, UnmatchedDelim}; impl<'psess, 'src> Lexer<'psess, 'src> { // Lex into a token stream. The `Spacing` in the result is that of the // opening delimiter. pub(super) fn lex_token_trees( &mut self, is_delimited: bool, ) -> Result<(Spacing, TokenStream), Vec>> { // Move past the opening delimiter. let open_spacing = self.bump_minimal(); let mut buf = Vec::new(); loop { if let Some(delim) = self.token.kind.open_delim() { // Invisible delimiters cannot occur here because `TokenTreesReader` parses // code directly from strings, with no macro expansion involved. debug_assert!(!matches!(delim, Delimiter::Invisible(_))); buf.push(match self.lex_token_tree_open_delim(delim) { Ok(val) => val, Err(errs) => return Err(errs), }) } else if let Some(delim) = self.token.kind.close_delim() { // Invisible delimiters cannot occur here because `TokenTreesReader` parses // code directly from strings, with no macro expansion involved. debug_assert!(!matches!(delim, Delimiter::Invisible(_))); return if is_delimited { Ok((open_spacing, TokenStream::new(buf))) } else { Err(vec![self.close_delim_err(delim)]) }; } else if self.token.kind == token::Eof { return if is_delimited { Err(vec![self.eof_err()]) } else { Ok((open_spacing, TokenStream::new(buf))) }; } else { // Get the next normal token. let (this_tok, this_spacing) = self.bump(); buf.push(TokenTree::Token(this_tok, this_spacing)); } } } fn eof_err(&mut self) -> Diag<'psess> { let msg = "this file contains an unclosed delimiter"; let mut err = self.dcx().struct_span_err(self.token.span, msg); let unclosed_delimiter_show_limit = 5; let len = usize::min(unclosed_delimiter_show_limit, self.diag_info.open_braces.len()); for &(_, span) in &self.diag_info.open_braces[..len] { err.span_label(span, "unclosed delimiter"); self.diag_info.unmatched_delims.push(UnmatchedDelim { found_delim: None, found_span: self.token.span, unclosed_span: Some(span), candidate_span: None, }); } if let Some((_, span)) = self.diag_info.open_braces.get(unclosed_delimiter_show_limit) && self.diag_info.open_braces.len() >= unclosed_delimiter_show_limit + 2 { err.span_label( *span, format!( "another {} unclosed delimiters begin from here", self.diag_info.open_braces.len() - unclosed_delimiter_show_limit ), ); } if let Some((delim, _)) = self.diag_info.open_braces.last() { report_suspicious_mismatch_block( &mut err, &self.diag_info, self.psess.source_map(), *delim, ) } err } fn lex_token_tree_open_delim( &mut self, open_delim: Delimiter, ) -> Result>> { // The span for beginning of the delimited section. let pre_span = self.token.span; self.diag_info.open_braces.push((open_delim, self.token.span)); // Lex the token trees within the delimiters. // We stop at any delimiter so we can try to recover if the user // uses an incorrect delimiter. let (open_spacing, tts) = self.lex_token_trees(/* is_delimited */ true)?; // Expand to cover the entire delimited token tree. let delim_span = DelimSpan::from_pair(pre_span, self.token.span); let sm = self.psess.source_map(); let close_spacing = if let Some(close_delim) = self.token.kind.close_delim() { if close_delim == open_delim { // Correct delimiter. let (open_brace, open_brace_span) = self.diag_info.open_braces.pop().unwrap(); let close_brace_span = self.token.span; if tts.is_empty() && close_delim == Delimiter::Brace { let empty_block_span = open_brace_span.to(close_brace_span); if !sm.is_multiline(empty_block_span) { // Only track if the block is in the form of `{}`, otherwise it is // likely that it was written on purpose. self.diag_info.empty_block_spans.push(empty_block_span); } } // only add braces if let (Delimiter::Brace, Delimiter::Brace) = (open_brace, open_delim) { // Add all the matching spans, we will sort by span later self.diag_info.matching_block_spans.push((open_brace_span, close_brace_span)); } // Move past the closing delimiter. self.bump_minimal() } else { // Incorrect delimiter. let mut unclosed_delimiter = None; let mut candidate = None; if self.diag_info.last_unclosed_found_span != Some(self.token.span) { // do not complain about the same unclosed delimiter multiple times self.diag_info.last_unclosed_found_span = Some(self.token.span); // This is a conservative error: only report the last unclosed // delimiter. The previous unclosed delimiters could actually be // closed! The lexer just hasn't gotten to them yet. if let Some(&(_, sp)) = self.diag_info.open_braces.last() { unclosed_delimiter = Some(sp); }; for (brace, brace_span) in &self.diag_info.open_braces { if same_indentation_level(sm, self.token.span, *brace_span) && brace == &close_delim { // high likelihood of these two corresponding candidate = Some(*brace_span); } } let (_, _) = self.diag_info.open_braces.pop().unwrap(); self.diag_info.unmatched_delims.push(UnmatchedDelim { found_delim: Some(close_delim), found_span: self.token.span, unclosed_span: unclosed_delimiter, candidate_span: candidate, }); } else { self.diag_info.open_braces.pop(); } // If the incorrect delimiter matches an earlier opening // delimiter, then don't consume it (it can be used to // close the earlier one). Otherwise, consume it. // E.g., we try to recover from: // fn foo() { // bar(baz( // } // Incorrect delimiter but matches the earlier `{` if !self.diag_info.open_braces.iter().any(|&(b, _)| b == close_delim) { self.bump_minimal() } else { // The choice of value here doesn't matter. Spacing::Alone } } } else { assert_eq!(self.token.kind, token::Eof); // Silently recover, the EOF token will be seen again // and an error emitted then. Thus we don't pop from // self.open_braces here. The choice of spacing value here // doesn't matter. Spacing::Alone }; let spacing = DelimSpacing::new(open_spacing, close_spacing); Ok(TokenTree::Delimited(delim_span, spacing, open_delim, tts)) } // Move on to the next token, returning the current token and its spacing. // Will glue adjacent single-char tokens together. fn bump(&mut self) -> (Token, Spacing) { let (this_spacing, next_tok) = loop { let (next_tok, is_next_tok_preceded_by_whitespace) = self.next_token_from_cursor(); if is_next_tok_preceded_by_whitespace { break (Spacing::Alone, next_tok); } else if let Some(glued) = self.token.glue(&next_tok) { self.token = glued; } else { let this_spacing = if next_tok.is_punct() { Spacing::Joint } else if next_tok == token::Eof { Spacing::Alone } else { Spacing::JointHidden }; break (this_spacing, next_tok); } }; let this_tok = std::mem::replace(&mut self.token, next_tok); (this_tok, this_spacing) } // Cut-down version of `bump` used when the token kind is known in advance. fn bump_minimal(&mut self) -> Spacing { let (next_tok, is_next_tok_preceded_by_whitespace) = self.next_token_from_cursor(); let this_spacing = if is_next_tok_preceded_by_whitespace { Spacing::Alone } else { if next_tok.is_punct() { Spacing::Joint } else if next_tok == token::Eof { Spacing::Alone } else { Spacing::JointHidden } }; self.token = next_tok; this_spacing } fn close_delim_err(&mut self, delim: Delimiter) -> Diag<'psess> { // An unexpected closing delimiter (i.e., there is no matching opening delimiter). let token_str = token_to_string(&self.token); let msg = format!("unexpected closing delimiter: `{token_str}`"); let mut err = self.dcx().struct_span_err(self.token.span, msg); report_suspicious_mismatch_block(&mut err, &self.diag_info, self.psess.source_map(), delim); err.span_label(self.token.span, "unexpected closing delimiter"); err } }