//! A pass that annotates every item and method with its stability level, //! propagating default levels lexically from parent to children ast nodes. use std::num::NonZero; use rustc_ast_lowering::stability::extern_abi_stability; use rustc_data_structures::fx::FxIndexMap; use rustc_data_structures::unord::{ExtendUnord, UnordMap, UnordSet}; use rustc_feature::{EnabledLangFeature, EnabledLibFeature}; use rustc_hir::attrs::{AttributeKind, DeprecatedSince}; use rustc_hir::def::{DefKind, Res}; use rustc_hir::def_id::{CRATE_DEF_ID, LOCAL_CRATE, LocalDefId, LocalModDefId}; use rustc_hir::intravisit::{self, Visitor, VisitorExt}; use rustc_hir::{ self as hir, AmbigArg, ConstStability, DefaultBodyStability, FieldDef, Item, ItemKind, Stability, StabilityLevel, StableSince, TraitRef, Ty, TyKind, UnstableReason, VERSION_PLACEHOLDER, Variant, find_attr, }; use rustc_middle::hir::nested_filter; use rustc_middle::middle::lib_features::{FeatureStability, LibFeatures}; use rustc_middle::middle::privacy::EffectiveVisibilities; use rustc_middle::middle::stability::{AllowUnstable, Deprecated, DeprecationEntry, EvalResult}; use rustc_middle::query::{LocalCrate, Providers}; use rustc_middle::ty::print::with_no_trimmed_paths; use rustc_middle::ty::{AssocContainer, TyCtxt}; use rustc_session::lint; use rustc_session::lint::builtin::{DEPRECATED, INEFFECTIVE_UNSTABLE_TRAIT_IMPL}; use rustc_span::{Span, Symbol, sym}; use tracing::instrument; use crate::errors; #[derive(PartialEq)] enum AnnotationKind { /// Annotation is required if not inherited from unstable parents. Required, /// Annotation is useless, reject it. Prohibited, /// Deprecation annotation is useless, reject it. (Stability attribute is still required.) DeprecationProhibited, /// Annotation itself is useless, but it can be propagated to children. Container, } fn inherit_deprecation(def_kind: DefKind) -> bool { match def_kind { DefKind::LifetimeParam | DefKind::TyParam | DefKind::ConstParam => false, _ => true, } } fn inherit_const_stability(tcx: TyCtxt<'_>, def_id: LocalDefId) -> bool { let def_kind = tcx.def_kind(def_id); match def_kind { DefKind::AssocFn | DefKind::AssocTy | DefKind::AssocConst => { match tcx.def_kind(tcx.local_parent(def_id)) { DefKind::Impl { of_trait: true } => true, _ => false, } } _ => false, } } fn annotation_kind(tcx: TyCtxt<'_>, def_id: LocalDefId) -> AnnotationKind { let def_kind = tcx.def_kind(def_id); match def_kind { // Inherent impls and foreign modules serve only as containers for other items, // they don't have their own stability. They still can be annotated as unstable // and propagate this unstability to children, but this annotation is completely // optional. They inherit stability from their parents when unannotated. DefKind::Impl { of_trait: false } | DefKind::ForeignMod => AnnotationKind::Container, DefKind::Impl { of_trait: true } => AnnotationKind::DeprecationProhibited, // Allow stability attributes on default generic arguments. DefKind::TyParam | DefKind::ConstParam => { match &tcx.hir_node_by_def_id(def_id).expect_generic_param().kind { hir::GenericParamKind::Type { default: Some(_), .. } | hir::GenericParamKind::Const { default: Some(_), .. } => { AnnotationKind::Container } _ => AnnotationKind::Prohibited, } } // Impl items in trait impls cannot have stability. DefKind::AssocTy | DefKind::AssocFn | DefKind::AssocConst => { match tcx.def_kind(tcx.local_parent(def_id)) { DefKind::Impl { of_trait: true } => AnnotationKind::Prohibited, _ => AnnotationKind::Required, } } _ => AnnotationKind::Required, } } fn lookup_deprecation_entry(tcx: TyCtxt<'_>, def_id: LocalDefId) -> Option { let attrs = tcx.hir_attrs(tcx.local_def_id_to_hir_id(def_id)); let depr = find_attr!(attrs, AttributeKind::Deprecation { deprecation, span: _ } => *deprecation ); let Some(depr) = depr else { if inherit_deprecation(tcx.def_kind(def_id)) { let parent_id = tcx.opt_local_parent(def_id)?; let parent_depr = tcx.lookup_deprecation_entry(parent_id)?; return Some(parent_depr); } return None; }; // `Deprecation` is just two pointers, no need to intern it Some(DeprecationEntry::local(depr, def_id)) } fn inherit_stability(def_kind: DefKind) -> bool { match def_kind { DefKind::Field | DefKind::Variant | DefKind::Ctor(..) => true, _ => false, } } /// If the `-Z force-unstable-if-unmarked` flag is passed then we provide /// a parent stability annotation which indicates that this is private /// with the `rustc_private` feature. This is intended for use when /// compiling library and `rustc_*` crates themselves so we can leverage crates.io /// while maintaining the invariant that all sysroot crates are unstable /// by default and are unable to be used. const FORCE_UNSTABLE: Stability = Stability { level: StabilityLevel::Unstable { reason: UnstableReason::Default, issue: NonZero::new(27812), is_soft: false, implied_by: None, old_name: None, }, feature: sym::rustc_private, }; #[instrument(level = "debug", skip(tcx))] fn lookup_stability(tcx: TyCtxt<'_>, def_id: LocalDefId) -> Option { // Propagate unstability. This can happen even for non-staged-api crates in case // -Zforce-unstable-if-unmarked is set. if !tcx.features().staged_api() { if !tcx.sess.opts.unstable_opts.force_unstable_if_unmarked { return None; } let Some(parent) = tcx.opt_local_parent(def_id) else { return Some(FORCE_UNSTABLE) }; if inherit_deprecation(tcx.def_kind(def_id)) { let parent = tcx.lookup_stability(parent)?; if parent.is_unstable() { return Some(parent); } } return None; } // # Regular stability let attrs = tcx.hir_attrs(tcx.local_def_id_to_hir_id(def_id)); let stab = find_attr!(attrs, AttributeKind::Stability { stability, span: _ } => *stability); if let Some(stab) = stab { return Some(stab); } if inherit_deprecation(tcx.def_kind(def_id)) { let Some(parent) = tcx.opt_local_parent(def_id) else { return tcx .sess .opts .unstable_opts .force_unstable_if_unmarked .then_some(FORCE_UNSTABLE); }; let parent = tcx.lookup_stability(parent)?; if parent.is_unstable() || inherit_stability(tcx.def_kind(def_id)) { return Some(parent); } } None } #[instrument(level = "debug", skip(tcx))] fn lookup_default_body_stability( tcx: TyCtxt<'_>, def_id: LocalDefId, ) -> Option { if !tcx.features().staged_api() { return None; } let attrs = tcx.hir_attrs(tcx.local_def_id_to_hir_id(def_id)); // FIXME: check that this item can have body stability find_attr!(attrs, AttributeKind::BodyStability { stability, .. } => *stability) } #[instrument(level = "debug", skip(tcx))] fn lookup_const_stability(tcx: TyCtxt<'_>, def_id: LocalDefId) -> Option { if !tcx.features().staged_api() { // Propagate unstability. This can happen even for non-staged-api crates in case // -Zforce-unstable-if-unmarked is set. if inherit_deprecation(tcx.def_kind(def_id)) { let parent = tcx.opt_local_parent(def_id)?; let parent_stab = tcx.lookup_stability(parent)?; if parent_stab.is_unstable() && let Some(fn_sig) = tcx.hir_node_by_def_id(def_id).fn_sig() && fn_sig.header.is_const() { let attrs = tcx.hir_attrs(tcx.local_def_id_to_hir_id(def_id)); let const_stability_indirect = find_attr!(attrs, AttributeKind::ConstStabilityIndirect); return Some(ConstStability::unmarked(const_stability_indirect, parent_stab)); } } return None; } let attrs = tcx.hir_attrs(tcx.local_def_id_to_hir_id(def_id)); let const_stability_indirect = find_attr!(attrs, AttributeKind::ConstStabilityIndirect); let const_stab = find_attr!(attrs, AttributeKind::ConstStability { stability, span: _ } => *stability); // After checking the immediate attributes, get rid of the span and compute implied // const stability: inherit feature gate from regular stability. let mut const_stab = const_stab .map(|const_stab| ConstStability::from_partial(const_stab, const_stability_indirect)); // If this is a const fn but not annotated with stability markers, see if we can inherit // regular stability. if let Some(fn_sig) = tcx.hir_node_by_def_id(def_id).fn_sig() && fn_sig.header.is_const() && const_stab.is_none() // We only ever inherit unstable features. && let Some(inherit_regular_stab) = tcx.lookup_stability(def_id) && inherit_regular_stab.is_unstable() { const_stab = Some(ConstStability { // We subject these implicitly-const functions to recursive const stability. const_stable_indirect: true, promotable: false, level: inherit_regular_stab.level, feature: inherit_regular_stab.feature, }); } if let Some(const_stab) = const_stab { return Some(const_stab); } // `impl const Trait for Type` items forward their const stability to their immediate children. // FIXME(const_trait_impl): how is this supposed to interact with `#[rustc_const_stable_indirect]`? // Currently, once that is set, we do not inherit anything from the parent any more. if inherit_const_stability(tcx, def_id) { let parent = tcx.opt_local_parent(def_id)?; let parent = tcx.lookup_const_stability(parent)?; if parent.is_const_unstable() { return Some(parent); } } None } fn stability_implications(tcx: TyCtxt<'_>, LocalCrate: LocalCrate) -> UnordMap { let mut implications = UnordMap::default(); let mut register_implication = |def_id| { if let Some(stability) = tcx.lookup_stability(def_id) && let StabilityLevel::Unstable { implied_by: Some(implied_by), .. } = stability.level { implications.insert(implied_by, stability.feature); } if let Some(stability) = tcx.lookup_const_stability(def_id) && let StabilityLevel::Unstable { implied_by: Some(implied_by), .. } = stability.level { implications.insert(implied_by, stability.feature); } }; if tcx.features().staged_api() { register_implication(CRATE_DEF_ID); for def_id in tcx.hir_crate_items(()).definitions() { register_implication(def_id); let def_kind = tcx.def_kind(def_id); if def_kind.is_adt() { let adt = tcx.adt_def(def_id); for variant in adt.variants() { if variant.def_id != def_id.to_def_id() { register_implication(variant.def_id.expect_local()); } for field in &variant.fields { register_implication(field.did.expect_local()); } if let Some(ctor_def_id) = variant.ctor_def_id() { register_implication(ctor_def_id.expect_local()) } } } if def_kind.has_generics() { for param in tcx.generics_of(def_id).own_params.iter() { register_implication(param.def_id.expect_local()) } } } } implications } struct MissingStabilityAnnotations<'tcx> { tcx: TyCtxt<'tcx>, effective_visibilities: &'tcx EffectiveVisibilities, } impl<'tcx> MissingStabilityAnnotations<'tcx> { /// Verify that deprecation and stability attributes make sense with one another. #[instrument(level = "trace", skip(self))] fn check_compatible_stability(&self, def_id: LocalDefId) { if !self.tcx.features().staged_api() { return; } let depr = self.tcx.lookup_deprecation_entry(def_id); let stab = self.tcx.lookup_stability(def_id); let const_stab = self.tcx.lookup_const_stability(def_id); macro_rules! find_attr_span { ($name:ident) => {{ let attrs = self.tcx.hir_attrs(self.tcx.local_def_id_to_hir_id(def_id)); find_attr!(attrs, AttributeKind::$name { span, .. } => *span) }} } if stab.is_none() && depr.map_or(false, |d| d.attr.is_since_rustc_version()) && let Some(span) = find_attr_span!(Deprecation) { self.tcx.dcx().emit_err(errors::DeprecatedAttribute { span }); } if let Some(stab) = stab { // Error if prohibited, or can't inherit anything from a container. let kind = annotation_kind(self.tcx, def_id); if kind == AnnotationKind::Prohibited || (kind == AnnotationKind::Container && stab.level.is_stable() && depr.is_some()) { if let Some(span) = find_attr_span!(Stability) { let item_sp = self.tcx.def_span(def_id); self.tcx.dcx().emit_err(errors::UselessStability { span, item_sp }); } } // Check if deprecated_since < stable_since. If it is, // this is *almost surely* an accident. if let Some(depr) = depr && let DeprecatedSince::RustcVersion(dep_since) = depr.attr.since && let StabilityLevel::Stable { since: stab_since, .. } = stab.level && let Some(span) = find_attr_span!(Stability) { let item_sp = self.tcx.def_span(def_id); match stab_since { StableSince::Current => { self.tcx .dcx() .emit_err(errors::CannotStabilizeDeprecated { span, item_sp }); } StableSince::Version(stab_since) => { if dep_since < stab_since { self.tcx .dcx() .emit_err(errors::CannotStabilizeDeprecated { span, item_sp }); } } StableSince::Err(_) => { // An error already reported. Assume the unparseable stabilization // version is older than the deprecation version. } } } } // If the current node is a function with const stability attributes (directly given or // implied), check if the function/method is const or the parent impl block is const. let fn_sig = self.tcx.hir_node_by_def_id(def_id).fn_sig(); if let Some(fn_sig) = fn_sig && !fn_sig.header.is_const() && const_stab.is_some() && find_attr_span!(ConstStability).is_some() { self.tcx.dcx().emit_err(errors::MissingConstErr { fn_sig_span: fn_sig.span }); } // If this is marked const *stable*, it must also be regular-stable. if let Some(const_stab) = const_stab && let Some(fn_sig) = fn_sig && const_stab.is_const_stable() && !stab.is_some_and(|s| s.is_stable()) && let Some(const_span) = find_attr_span!(ConstStability) { self.tcx .dcx() .emit_err(errors::ConstStableNotStable { fn_sig_span: fn_sig.span, const_span }); } if let Some(stab) = &const_stab && stab.is_const_stable() && stab.const_stable_indirect && let Some(span) = find_attr_span!(ConstStability) { self.tcx.dcx().emit_err(errors::RustcConstStableIndirectPairing { span }); } } #[instrument(level = "debug", skip(self))] fn check_missing_stability(&self, def_id: LocalDefId) { let stab = self.tcx.lookup_stability(def_id); self.tcx.ensure_ok().lookup_const_stability(def_id); if !self.tcx.sess.is_test_crate() && stab.is_none() && self.effective_visibilities.is_reachable(def_id) { let descr = self.tcx.def_descr(def_id.to_def_id()); let span = self.tcx.def_span(def_id); self.tcx.dcx().emit_err(errors::MissingStabilityAttr { span, descr }); } } fn check_missing_const_stability(&self, def_id: LocalDefId) { let is_const = self.tcx.is_const_fn(def_id.to_def_id()) || (self.tcx.def_kind(def_id.to_def_id()) == DefKind::Trait && self.tcx.is_const_trait(def_id.to_def_id())); // Reachable const fn/trait must have a stability attribute. if is_const && self.effective_visibilities.is_reachable(def_id) && self.tcx.lookup_const_stability(def_id).is_none() { let span = self.tcx.def_span(def_id); let descr = self.tcx.def_descr(def_id.to_def_id()); self.tcx.dcx().emit_err(errors::MissingConstStabAttr { span, descr }); } } } impl<'tcx> Visitor<'tcx> for MissingStabilityAnnotations<'tcx> { type NestedFilter = nested_filter::OnlyBodies; fn maybe_tcx(&mut self) -> Self::MaybeTyCtxt { self.tcx } fn visit_item(&mut self, i: &'tcx Item<'tcx>) { self.check_compatible_stability(i.owner_id.def_id); // Inherent impls and foreign modules serve only as containers for other items, // they don't have their own stability. They still can be annotated as unstable // and propagate this instability to children, but this annotation is completely // optional. They inherit stability from their parents when unannotated. if !matches!( i.kind, hir::ItemKind::Impl(hir::Impl { of_trait: None, .. }) | hir::ItemKind::ForeignMod { .. } ) { self.check_missing_stability(i.owner_id.def_id); } // Ensure stable `const fn` have a const stability attribute. self.check_missing_const_stability(i.owner_id.def_id); intravisit::walk_item(self, i) } fn visit_trait_item(&mut self, ti: &'tcx hir::TraitItem<'tcx>) { self.check_compatible_stability(ti.owner_id.def_id); self.check_missing_stability(ti.owner_id.def_id); intravisit::walk_trait_item(self, ti); } fn visit_impl_item(&mut self, ii: &'tcx hir::ImplItem<'tcx>) { self.check_compatible_stability(ii.owner_id.def_id); if let hir::ImplItemImplKind::Inherent { .. } = ii.impl_kind { self.check_missing_stability(ii.owner_id.def_id); self.check_missing_const_stability(ii.owner_id.def_id); } intravisit::walk_impl_item(self, ii); } fn visit_variant(&mut self, var: &'tcx Variant<'tcx>) { self.check_compatible_stability(var.def_id); self.check_missing_stability(var.def_id); if let Some(ctor_def_id) = var.data.ctor_def_id() { self.check_missing_stability(ctor_def_id); } intravisit::walk_variant(self, var); } fn visit_field_def(&mut self, s: &'tcx FieldDef<'tcx>) { self.check_compatible_stability(s.def_id); self.check_missing_stability(s.def_id); intravisit::walk_field_def(self, s); } fn visit_foreign_item(&mut self, i: &'tcx hir::ForeignItem<'tcx>) { self.check_compatible_stability(i.owner_id.def_id); self.check_missing_stability(i.owner_id.def_id); intravisit::walk_foreign_item(self, i); } fn visit_generic_param(&mut self, p: &'tcx hir::GenericParam<'tcx>) { self.check_compatible_stability(p.def_id); // Note that we don't need to `check_missing_stability` for default generic parameters, // as we assume that any default generic parameters without attributes are automatically // stable (assuming they have not inherited instability from their parent). intravisit::walk_generic_param(self, p); } } /// Cross-references the feature names of unstable APIs with enabled /// features and possibly prints errors. fn check_mod_unstable_api_usage(tcx: TyCtxt<'_>, module_def_id: LocalModDefId) { tcx.hir_visit_item_likes_in_module(module_def_id, &mut Checker { tcx }); let is_staged_api = tcx.sess.opts.unstable_opts.force_unstable_if_unmarked || tcx.features().staged_api(); if is_staged_api { let effective_visibilities = &tcx.effective_visibilities(()); let mut missing = MissingStabilityAnnotations { tcx, effective_visibilities }; if module_def_id.is_top_level_module() { missing.check_missing_stability(CRATE_DEF_ID); } tcx.hir_visit_item_likes_in_module(module_def_id, &mut missing); } if module_def_id.is_top_level_module() { check_unused_or_stable_features(tcx) } } pub(crate) fn provide(providers: &mut Providers) { *providers = Providers { check_mod_unstable_api_usage, stability_implications, lookup_stability, lookup_const_stability, lookup_default_body_stability, lookup_deprecation_entry, ..*providers }; } struct Checker<'tcx> { tcx: TyCtxt<'tcx>, } impl<'tcx> Visitor<'tcx> for Checker<'tcx> { type NestedFilter = nested_filter::OnlyBodies; /// Because stability levels are scoped lexically, we want to walk /// nested items in the context of the outer item, so enable /// deep-walking. fn maybe_tcx(&mut self) -> Self::MaybeTyCtxt { self.tcx } fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) { match item.kind { hir::ItemKind::ExternCrate(_, ident) => { // compiler-generated `extern crate` items have a dummy span. // `std` is still checked for the `restricted-std` feature. if item.span.is_dummy() && ident.name != sym::std { return; } let Some(cnum) = self.tcx.extern_mod_stmt_cnum(item.owner_id.def_id) else { return; }; let def_id = cnum.as_def_id(); self.tcx.check_stability(def_id, Some(item.hir_id()), item.span, None); } // For implementations of traits, check the stability of each item // individually as it's possible to have a stable trait with unstable // items. hir::ItemKind::Impl(hir::Impl { of_trait: Some(of_trait), self_ty, items, .. }) => { let features = self.tcx.features(); if features.staged_api() { let attrs = self.tcx.hir_attrs(item.hir_id()); let stab = find_attr!(attrs, AttributeKind::Stability{stability, span} => (*stability, *span)); // FIXME(jdonszelmann): make it impossible to miss the or_else in the typesystem let const_stab = find_attr!(attrs, AttributeKind::ConstStability{stability, ..} => *stability); let unstable_feature_stab = find_attr!(attrs, AttributeKind::UnstableFeatureBound(i) => i) .map(|i| i.as_slice()) .unwrap_or_default(); // If this impl block has an #[unstable] attribute, give an // error if all involved types and traits are stable, because // it will have no effect. // See: https://github.com/rust-lang/rust/issues/55436 // // The exception is when there are both #[unstable_feature_bound(..)] and // #![unstable(feature = "..", issue = "..")] that have the same symbol because // that can effectively mark an impl as unstable. // // For example: // ``` // #[unstable_feature_bound(feat_foo)] // #[unstable(feature = "feat_foo", issue = "none")] // impl Foo for Bar {} // ``` if let Some(( Stability { level: StabilityLevel::Unstable { .. }, feature }, span, )) = stab { let mut c = CheckTraitImplStable { tcx: self.tcx, fully_stable: true }; c.visit_ty_unambig(self_ty); c.visit_trait_ref(&of_trait.trait_ref); // Skip the lint if the impl is marked as unstable using // #[unstable_feature_bound(..)] let mut unstable_feature_bound_in_effect = false; for (unstable_bound_feat_name, _) in unstable_feature_stab { if *unstable_bound_feat_name == feature { unstable_feature_bound_in_effect = true; } } // do not lint when the trait isn't resolved, since resolution error should // be fixed first if of_trait.trait_ref.path.res != Res::Err && c.fully_stable && !unstable_feature_bound_in_effect { self.tcx.emit_node_span_lint( INEFFECTIVE_UNSTABLE_TRAIT_IMPL, item.hir_id(), span, errors::IneffectiveUnstableImpl, ); } } if features.const_trait_impl() && let hir::Constness::Const = of_trait.constness { let stable_or_implied_stable = match const_stab { None => true, Some(stab) if stab.is_const_stable() => { // `#![feature(const_trait_impl)]` is unstable, so any impl declared stable // needs to have an error emitted. // Note: Remove this error once `const_trait_impl` is stabilized self.tcx .dcx() .emit_err(errors::TraitImplConstStable { span: item.span }); true } Some(_) => false, }; if let Some(trait_id) = of_trait.trait_ref.trait_def_id() && let Some(const_stab) = self.tcx.lookup_const_stability(trait_id) { // the const stability of a trait impl must match the const stability on the trait. if const_stab.is_const_stable() != stable_or_implied_stable { let trait_span = self.tcx.def_ident_span(trait_id).unwrap(); let impl_stability = if stable_or_implied_stable { errors::ImplConstStability::Stable { span: item.span } } else { errors::ImplConstStability::Unstable { span: item.span } }; let trait_stability = if const_stab.is_const_stable() { errors::TraitConstStability::Stable { span: trait_span } } else { errors::TraitConstStability::Unstable { span: trait_span } }; self.tcx.dcx().emit_err(errors::TraitImplConstStabilityMismatch { span: item.span, impl_stability, trait_stability, }); } } } } if let hir::Constness::Const = of_trait.constness && let Some(def_id) = of_trait.trait_ref.trait_def_id() { // FIXME(const_trait_impl): Improve the span here. self.tcx.check_const_stability( def_id, of_trait.trait_ref.path.span, of_trait.trait_ref.path.span, ); } for impl_item_ref in items { let impl_item = self.tcx.associated_item(impl_item_ref.owner_id); if let AssocContainer::TraitImpl(Ok(def_id)) = impl_item.container { // Pass `None` to skip deprecation warnings. self.tcx.check_stability( def_id, None, self.tcx.def_span(impl_item_ref.owner_id), None, ); } } } _ => (/* pass */), } intravisit::walk_item(self, item); } fn visit_poly_trait_ref(&mut self, t: &'tcx hir::PolyTraitRef<'tcx>) { match t.modifiers.constness { hir::BoundConstness::Always(span) | hir::BoundConstness::Maybe(span) => { if let Some(def_id) = t.trait_ref.trait_def_id() { self.tcx.check_const_stability(def_id, t.trait_ref.path.span, span); } } hir::BoundConstness::Never => {} } intravisit::walk_poly_trait_ref(self, t); } fn visit_path(&mut self, path: &hir::Path<'tcx>, id: hir::HirId) { if let Some(def_id) = path.res.opt_def_id() { let method_span = path.segments.last().map(|s| s.ident.span); let item_is_allowed = self.tcx.check_stability_allow_unstable( def_id, Some(id), path.span, method_span, if is_unstable_reexport(self.tcx, id) { AllowUnstable::Yes } else { AllowUnstable::No }, ); if item_is_allowed { // The item itself is allowed; check whether the path there is also allowed. let is_allowed_through_unstable_modules: Option = self.tcx.lookup_stability(def_id).and_then(|stab| match stab.level { StabilityLevel::Stable { allowed_through_unstable_modules, .. } => { allowed_through_unstable_modules } _ => None, }); // Check parent modules stability as well if the item the path refers to is itself // stable. We only emit errors for unstable path segments if the item is stable // or allowed because stability is often inherited, so the most common case is that // both the segments and the item are unstable behind the same feature flag. // // We check here rather than in `visit_path_segment` to prevent visiting the last // path segment twice // // We include special cases via #[rustc_allowed_through_unstable_modules] for items // that were accidentally stabilized through unstable paths before this check was // added, such as `core::intrinsics::transmute` let parents = path.segments.iter().rev().skip(1); for path_segment in parents { if let Some(def_id) = path_segment.res.opt_def_id() { match is_allowed_through_unstable_modules { None => { // Emit a hard stability error if this path is not stable. // use `None` for id to prevent deprecation check self.tcx.check_stability_allow_unstable( def_id, None, path.span, None, if is_unstable_reexport(self.tcx, id) { AllowUnstable::Yes } else { AllowUnstable::No }, ); } Some(deprecation) => { // Call the stability check directly so that we can control which // diagnostic is emitted. let eval_result = self.tcx.eval_stability_allow_unstable( def_id, None, path.span, None, if is_unstable_reexport(self.tcx, id) { AllowUnstable::Yes } else { AllowUnstable::No }, ); let is_allowed = matches!(eval_result, EvalResult::Allow); if !is_allowed { // Calculating message for lint involves calling `self.def_path_str`, // which will by default invoke the expensive `visible_parent_map` query. // Skip all that work if the lint is allowed anyway. if self.tcx.lint_level_at_node(DEPRECATED, id).level == lint::Level::Allow { return; } // Show a deprecation message. let def_path = with_no_trimmed_paths!(self.tcx.def_path_str(def_id)); let def_kind = self.tcx.def_descr(def_id); let diag = Deprecated { sub: None, kind: def_kind.to_owned(), path: def_path, note: Some(deprecation), since_kind: lint::DeprecatedSinceKind::InEffect, }; self.tcx.emit_node_span_lint( DEPRECATED, id, method_span.unwrap_or(path.span), diag, ); } } } } } } } intravisit::walk_path(self, path) } } /// Check whether a path is a `use` item that has been marked as unstable. /// /// See issue #94972 for details on why this is a special case fn is_unstable_reexport(tcx: TyCtxt<'_>, id: hir::HirId) -> bool { // Get the LocalDefId so we can lookup the item to check the kind. let Some(owner) = id.as_owner() else { return false; }; let def_id = owner.def_id; let Some(stab) = tcx.lookup_stability(def_id) else { return false; }; if stab.level.is_stable() { // The re-export is not marked as unstable, don't override return false; } // If this is a path that isn't a use, we don't need to do anything special if !matches!(tcx.hir_expect_item(def_id).kind, ItemKind::Use(..)) { return false; } true } struct CheckTraitImplStable<'tcx> { tcx: TyCtxt<'tcx>, fully_stable: bool, } impl<'tcx> Visitor<'tcx> for CheckTraitImplStable<'tcx> { fn visit_path(&mut self, path: &hir::Path<'tcx>, _id: hir::HirId) { if let Some(def_id) = path.res.opt_def_id() && let Some(stab) = self.tcx.lookup_stability(def_id) { self.fully_stable &= stab.level.is_stable(); } intravisit::walk_path(self, path) } fn visit_trait_ref(&mut self, t: &'tcx TraitRef<'tcx>) { if let Res::Def(DefKind::Trait, trait_did) = t.path.res { if let Some(stab) = self.tcx.lookup_stability(trait_did) { self.fully_stable &= stab.level.is_stable(); } } intravisit::walk_trait_ref(self, t) } fn visit_ty(&mut self, t: &'tcx Ty<'tcx, AmbigArg>) { if let TyKind::Never = t.kind { self.fully_stable = false; } if let TyKind::FnPtr(function) = t.kind { if extern_abi_stability(function.abi).is_err() { self.fully_stable = false; } } intravisit::walk_ty(self, t) } fn visit_fn_decl(&mut self, fd: &'tcx hir::FnDecl<'tcx>) { for ty in fd.inputs { self.visit_ty_unambig(ty) } if let hir::FnRetTy::Return(output_ty) = fd.output { match output_ty.kind { TyKind::Never => {} // `-> !` is stable _ => self.visit_ty_unambig(output_ty), } } } } /// Given the list of enabled features that were not language features (i.e., that /// were expected to be library features), and the list of features used from /// libraries, identify activated features that don't exist and error about them. // This is `pub` for rustdoc. rustc should call it through `check_mod_unstable_api_usage`. pub fn check_unused_or_stable_features(tcx: TyCtxt<'_>) { let _prof_timer = tcx.sess.timer("unused_lib_feature_checking"); let enabled_lang_features = tcx.features().enabled_lang_features(); let mut lang_features = UnordSet::default(); for EnabledLangFeature { gate_name, attr_sp, stable_since } in enabled_lang_features { if let Some(version) = stable_since { // Warn if the user has enabled an already-stable lang feature. unnecessary_stable_feature_lint(tcx, *attr_sp, *gate_name, *version); } if !lang_features.insert(gate_name) { // Warn if the user enables a lang feature multiple times. tcx.dcx().emit_err(errors::DuplicateFeatureErr { span: *attr_sp, feature: *gate_name }); } } let enabled_lib_features = tcx.features().enabled_lib_features(); let mut remaining_lib_features = FxIndexMap::default(); for EnabledLibFeature { gate_name, attr_sp } in enabled_lib_features { if remaining_lib_features.contains_key(gate_name) { // Warn if the user enables a lib feature multiple times. tcx.dcx().emit_err(errors::DuplicateFeatureErr { span: *attr_sp, feature: *gate_name }); } remaining_lib_features.insert(*gate_name, *attr_sp); } // `stdbuild` has special handling for `libc`, so we need to // recognise the feature when building std. // Likewise, libtest is handled specially, so `test` isn't // available as we'd like it to be. // FIXME: only remove `libc` when `stdbuild` is enabled. // FIXME: remove special casing for `test`. // FIXME(#120456) - is `swap_remove` correct? remaining_lib_features.swap_remove(&sym::libc); remaining_lib_features.swap_remove(&sym::test); /// For each feature in `defined_features`.. /// /// - If it is in `remaining_lib_features` (those features with `#![feature(..)]` attributes in /// the current crate), check if it is stable (or partially stable) and thus an unnecessary /// attribute. /// - If it is in `remaining_implications` (a feature that is referenced by an `implied_by` /// from the current crate), then remove it from the remaining implications. /// /// Once this function has been invoked for every feature (local crate and all extern crates), /// then.. /// /// - If features remain in `remaining_lib_features`, then the user has enabled a feature that /// does not exist. /// - If features remain in `remaining_implications`, the `implied_by` refers to a feature that /// does not exist. /// /// By structuring the code in this way: checking the features defined from each crate one at a /// time, less loading from metadata is performed and thus compiler performance is improved. fn check_features<'tcx>( tcx: TyCtxt<'tcx>, remaining_lib_features: &mut FxIndexMap, remaining_implications: &mut UnordMap, defined_features: &LibFeatures, all_implications: &UnordMap, ) { for (feature, stability) in defined_features.to_sorted_vec() { if let FeatureStability::AcceptedSince(since) = stability && let Some(span) = remaining_lib_features.get(&feature) { // Warn if the user has enabled an already-stable lib feature. if let Some(implies) = all_implications.get(&feature) { unnecessary_partially_stable_feature_lint(tcx, *span, feature, *implies, since); } else { unnecessary_stable_feature_lint(tcx, *span, feature, since); } } // FIXME(#120456) - is `swap_remove` correct? remaining_lib_features.swap_remove(&feature); // `feature` is the feature doing the implying, but `implied_by` is the feature with // the attribute that establishes this relationship. `implied_by` is guaranteed to be a // feature defined in the local crate because `remaining_implications` is only the // implications from this crate. remaining_implications.remove(&feature); if let FeatureStability::Unstable { old_name: Some(alias) } = stability && let Some(span) = remaining_lib_features.swap_remove(&alias) { tcx.dcx().emit_err(errors::RenamedFeature { span, feature, alias }); } if remaining_lib_features.is_empty() && remaining_implications.is_empty() { break; } } } // All local crate implications need to have the feature that implies it confirmed to exist. let mut remaining_implications = tcx.stability_implications(LOCAL_CRATE).clone(); // We always collect the lib features enabled in the current crate, even if there are // no unknown features, because the collection also does feature attribute validation. let local_defined_features = tcx.lib_features(LOCAL_CRATE); if !remaining_lib_features.is_empty() || !remaining_implications.is_empty() { // Loading the implications of all crates is unavoidable to be able to emit the partial // stabilization diagnostic, but it can be avoided when there are no // `remaining_lib_features`. let mut all_implications = remaining_implications.clone(); for &cnum in tcx.crates(()) { all_implications .extend_unord(tcx.stability_implications(cnum).items().map(|(k, v)| (*k, *v))); } check_features( tcx, &mut remaining_lib_features, &mut remaining_implications, local_defined_features, &all_implications, ); for &cnum in tcx.crates(()) { if remaining_lib_features.is_empty() && remaining_implications.is_empty() { break; } check_features( tcx, &mut remaining_lib_features, &mut remaining_implications, tcx.lib_features(cnum), &all_implications, ); } } for (feature, span) in remaining_lib_features { tcx.dcx().emit_err(errors::UnknownFeature { span, feature }); } for (&implied_by, &feature) in remaining_implications.to_sorted_stable_ord() { let local_defined_features = tcx.lib_features(LOCAL_CRATE); let span = local_defined_features .stability .get(&feature) .expect("feature that implied another does not exist") .1; tcx.dcx().emit_err(errors::ImpliedFeatureNotExist { span, feature, implied_by }); } // FIXME(#44232): the `used_features` table no longer exists, so we // don't lint about unused features. We should re-enable this one day! } fn unnecessary_partially_stable_feature_lint( tcx: TyCtxt<'_>, span: Span, feature: Symbol, implies: Symbol, since: Symbol, ) { tcx.emit_node_span_lint( lint::builtin::STABLE_FEATURES, hir::CRATE_HIR_ID, span, errors::UnnecessaryPartialStableFeature { span, line: tcx.sess.source_map().span_extend_to_line(span), feature, since, implies, }, ); } fn unnecessary_stable_feature_lint( tcx: TyCtxt<'_>, span: Span, feature: Symbol, mut since: Symbol, ) { if since.as_str() == VERSION_PLACEHOLDER { since = sym::env_CFG_RELEASE; } tcx.emit_node_span_lint( lint::builtin::STABLE_FEATURES, hir::CRATE_HIR_ID, span, errors::UnnecessaryStableFeature { feature, since }, ); }