//! Define the interface with the Rust compiler. //! //! StableMIR users should not use any of the items in this module directly. //! These APIs have no stability guarantee. use std::cell::Cell; use rustc_hir::def::DefKind; use rustc_public_bridge::context::SmirCtxt; use rustc_public_bridge::{Bridge, SmirContainer}; use tracing::debug; use crate::abi::{FnAbi, Layout, LayoutShape, ReprOptions}; use crate::crate_def::Attribute; use crate::mir::alloc::{AllocId, GlobalAlloc}; use crate::mir::mono::{Instance, InstanceDef, StaticDef}; use crate::mir::{BinOp, Body, Place, UnOp}; use crate::target::{MachineInfo, MachineSize}; use crate::ty::{ AdtDef, AdtKind, Allocation, ClosureDef, ClosureKind, CoroutineDef, Discr, FieldDef, FnDef, ForeignDef, ForeignItemKind, ForeignModule, ForeignModuleDef, GenericArgs, GenericPredicates, Generics, ImplDef, ImplTrait, IntrinsicDef, LineInfo, MirConst, PolyFnSig, RigidTy, Span, TraitDecl, TraitDef, Ty, TyConst, TyConstId, TyKind, UintTy, VariantDef, VariantIdx, }; use crate::unstable::{RustcInternal, Stable, new_item_kind}; use crate::{ AssocItems, Crate, CrateDef, CrateItem, CrateItems, CrateNum, DefId, Error, Filename, ImplTraitDecls, ItemKind, Symbol, TraitDecls, alloc, mir, }; pub struct BridgeTys; impl Bridge for BridgeTys { type DefId = crate::DefId; type AllocId = crate::mir::alloc::AllocId; type Span = crate::ty::Span; type Ty = crate::ty::Ty; type InstanceDef = crate::mir::mono::InstanceDef; type TyConstId = crate::ty::TyConstId; type MirConstId = crate::ty::MirConstId; type Layout = crate::abi::Layout; type Error = crate::Error; type CrateItem = crate::CrateItem; type AdtDef = crate::ty::AdtDef; type ForeignModuleDef = crate::ty::ForeignModuleDef; type ForeignDef = crate::ty::ForeignDef; type FnDef = crate::ty::FnDef; type ClosureDef = crate::ty::ClosureDef; type CoroutineDef = crate::ty::CoroutineDef; type CoroutineClosureDef = crate::ty::CoroutineClosureDef; type AliasDef = crate::ty::AliasDef; type ParamDef = crate::ty::ParamDef; type BrNamedDef = crate::ty::BrNamedDef; type TraitDef = crate::ty::TraitDef; type GenericDef = crate::ty::GenericDef; type ConstDef = crate::ty::ConstDef; type ImplDef = crate::ty::ImplDef; type RegionDef = crate::ty::RegionDef; type CoroutineWitnessDef = crate::ty::CoroutineWitnessDef; type AssocDef = crate::ty::AssocDef; type OpaqueDef = crate::ty::OpaqueDef; type Prov = crate::ty::Prov; type StaticDef = crate::mir::mono::StaticDef; type Allocation = crate::ty::Allocation; } /// Stable public API for querying compiler information. /// /// All queries are delegated to [`rustc_public_bridge::context::SmirCtxt`] that provides /// similar APIs but based on internal rustc constructs. /// /// Do not use this directly. This is currently used in the macro expansion. pub(crate) trait SmirInterface { fn entry_fn(&self) -> Option; /// Retrieve all items of the local crate that have a MIR associated with them. fn all_local_items(&self) -> CrateItems; /// Retrieve the body of a function. /// This function will panic if the body is not available. fn mir_body(&self, item: DefId) -> mir::Body; /// Check whether the body of a function is available. fn has_body(&self, item: DefId) -> bool; fn foreign_modules(&self, crate_num: CrateNum) -> Vec; /// Retrieve all functions defined in this crate. fn crate_functions(&self, crate_num: CrateNum) -> Vec; /// Retrieve all static items defined in this crate. fn crate_statics(&self, crate_num: CrateNum) -> Vec; fn foreign_module(&self, mod_def: ForeignModuleDef) -> ForeignModule; fn foreign_items(&self, mod_def: ForeignModuleDef) -> Vec; fn all_trait_decls(&self) -> TraitDecls; fn trait_decls(&self, crate_num: CrateNum) -> TraitDecls; fn trait_decl(&self, trait_def: &TraitDef) -> TraitDecl; fn all_trait_impls(&self) -> ImplTraitDecls; fn trait_impls(&self, crate_num: CrateNum) -> ImplTraitDecls; fn trait_impl(&self, trait_impl: &ImplDef) -> ImplTrait; fn generics_of(&self, def_id: DefId) -> Generics; fn predicates_of(&self, def_id: DefId) -> GenericPredicates; fn explicit_predicates_of(&self, def_id: DefId) -> GenericPredicates; /// Get information about the local crate. fn local_crate(&self) -> Crate; /// Retrieve a list of all external crates. fn external_crates(&self) -> Vec; /// Find a crate with the given name. fn find_crates(&self, name: &str) -> Vec; /// Returns the name of given `DefId` fn def_name(&self, def_id: DefId, trimmed: bool) -> Symbol; /// Return registered tool attributes with the given attribute name. /// /// FIXME(jdonszelmann): may panic on non-tool attributes. After more attribute work, non-tool /// attributes will simply return an empty list. /// /// Single segmented name like `#[clippy]` is specified as `&["clippy".to_string()]`. /// Multi-segmented name like `#[rustfmt::skip]` is specified as `&["rustfmt".to_string(), "skip".to_string()]`. fn tool_attrs(&self, def_id: DefId, attr: &[Symbol]) -> Vec; /// Get all tool attributes of a definition. fn all_tool_attrs(&self, def_id: DefId) -> Vec; /// Returns printable, human readable form of `Span` fn span_to_string(&self, span: Span) -> String; /// Return filename from given `Span`, for diagnostic purposes fn get_filename(&self, span: &Span) -> Filename; /// Return lines corresponding to this `Span` fn get_lines(&self, span: &Span) -> LineInfo; /// Returns the `kind` of given `DefId` fn item_kind(&self, item: CrateItem) -> ItemKind; /// Returns whether this is a foreign item. fn is_foreign_item(&self, item: DefId) -> bool; /// Returns the kind of a given foreign item. fn foreign_item_kind(&self, def: ForeignDef) -> ForeignItemKind; /// Returns the kind of a given algebraic data type fn adt_kind(&self, def: AdtDef) -> AdtKind; /// Returns if the ADT is a box. fn adt_is_box(&self, def: AdtDef) -> bool; /// Returns whether this ADT is simd. fn adt_is_simd(&self, def: AdtDef) -> bool; /// Returns whether this definition is a C string. fn adt_is_cstr(&self, def: AdtDef) -> bool; /// Returns the representation options for this ADT. fn adt_repr(&self, def: AdtDef) -> ReprOptions; /// Retrieve the function signature for the given generic arguments. fn fn_sig(&self, def: FnDef, args: &GenericArgs) -> PolyFnSig; /// Retrieve the intrinsic definition if the item corresponds one. fn intrinsic(&self, item: DefId) -> Option; /// Retrieve the plain function name of an intrinsic. fn intrinsic_name(&self, def: IntrinsicDef) -> Symbol; /// Retrieve the closure signature for the given generic arguments. fn closure_sig(&self, args: &GenericArgs) -> PolyFnSig; /// The number of variants in this ADT. fn adt_variants_len(&self, def: AdtDef) -> usize; /// Discriminant for a given variant index of AdtDef. fn adt_discr_for_variant(&self, adt: AdtDef, variant: VariantIdx) -> Discr; /// Discriminant for a given variand index and args of a coroutine. fn coroutine_discr_for_variant( &self, coroutine: CoroutineDef, args: &GenericArgs, variant: VariantIdx, ) -> Discr; /// The name of a variant. fn variant_name(&self, def: VariantDef) -> Symbol; fn variant_fields(&self, def: VariantDef) -> Vec; /// Evaluate constant as a target usize. fn eval_target_usize(&self, cnst: &MirConst) -> Result; fn eval_target_usize_ty(&self, cnst: &TyConst) -> Result; /// Create a new zero-sized constant. fn try_new_const_zst(&self, ty: Ty) -> Result; /// Create a new constant that represents the given string value. fn new_const_str(&self, value: &str) -> MirConst; /// Create a new constant that represents the given boolean value. fn new_const_bool(&self, value: bool) -> MirConst; /// Create a new constant that represents the given value. fn try_new_const_uint(&self, value: u128, uint_ty: UintTy) -> Result; fn try_new_ty_const_uint(&self, value: u128, uint_ty: UintTy) -> Result; /// Create a new type from the given kind. fn new_rigid_ty(&self, kind: RigidTy) -> Ty; /// Create a new box type, `Box`, for the given inner type `T`. fn new_box_ty(&self, ty: Ty) -> Ty; /// Returns the type of given crate item. fn def_ty(&self, item: DefId) -> Ty; /// Returns the type of given definition instantiated with the given arguments. fn def_ty_with_args(&self, item: DefId, args: &GenericArgs) -> Ty; /// Returns literal value of a const as a string. fn mir_const_pretty(&self, cnst: &MirConst) -> String; /// `Span` of an item fn span_of_an_item(&self, def_id: DefId) -> Span; fn ty_const_pretty(&self, ct: TyConstId) -> String; /// Obtain the representation of a type. fn ty_pretty(&self, ty: Ty) -> String; /// Obtain the kind of a type. fn ty_kind(&self, ty: Ty) -> TyKind; // Get the discriminant Ty for this Ty if there's one. fn rigid_ty_discriminant_ty(&self, ty: &RigidTy) -> Ty; /// Get the body of an Instance which is already monomorphized. fn instance_body(&self, instance: InstanceDef) -> Option; /// Get the instance type with generic instantiations applied and lifetimes erased. fn instance_ty(&self, instance: InstanceDef) -> Ty; /// Get the instantiation types. fn instance_args(&self, def: InstanceDef) -> GenericArgs; /// Get the instance. fn instance_def_id(&self, instance: InstanceDef) -> DefId; /// Get the instance mangled name. fn instance_mangled_name(&self, instance: InstanceDef) -> Symbol; /// Check if this is an empty DropGlue shim. fn is_empty_drop_shim(&self, def: InstanceDef) -> bool; /// Convert a non-generic crate item into an instance. /// This function will panic if the item is generic. fn mono_instance(&self, def_id: DefId) -> Instance; /// Item requires monomorphization. fn requires_monomorphization(&self, def_id: DefId) -> bool; /// Resolve an instance from the given function definition and generic arguments. fn resolve_instance(&self, def: FnDef, args: &GenericArgs) -> Option; /// Resolve an instance for drop_in_place for the given type. fn resolve_drop_in_place(&self, ty: Ty) -> Instance; /// Resolve instance for a function pointer. fn resolve_for_fn_ptr(&self, def: FnDef, args: &GenericArgs) -> Option; /// Resolve instance for a closure with the requested type. fn resolve_closure( &self, def: ClosureDef, args: &GenericArgs, kind: ClosureKind, ) -> Option; /// Evaluate a static's initializer. fn eval_static_initializer(&self, def: StaticDef) -> Result; /// Try to evaluate an instance into a constant. fn eval_instance(&self, def: InstanceDef, const_ty: Ty) -> Result; /// Retrieve global allocation for the given allocation ID. fn global_alloc(&self, id: AllocId) -> GlobalAlloc; /// Retrieve the id for the virtual table. fn vtable_allocation(&self, global_alloc: &GlobalAlloc) -> Option; fn krate(&self, def_id: DefId) -> Crate; fn instance_name(&self, def: InstanceDef, trimmed: bool) -> Symbol; /// Return information about the target machine. fn target_info(&self) -> MachineInfo; /// Get an instance ABI. fn instance_abi(&self, def: InstanceDef) -> Result; /// Get the ABI of a function pointer. fn fn_ptr_abi(&self, fn_ptr: PolyFnSig) -> Result; /// Get the layout of a type. fn ty_layout(&self, ty: Ty) -> Result; /// Get the layout shape. fn layout_shape(&self, id: Layout) -> LayoutShape; /// Get a debug string representation of a place. fn place_pretty(&self, place: &Place) -> String; /// Get the resulting type of binary operation. fn binop_ty(&self, bin_op: BinOp, rhs: Ty, lhs: Ty) -> Ty; /// Get the resulting type of unary operation. fn unop_ty(&self, un_op: UnOp, arg: Ty) -> Ty; /// Get all associated items of a definition. fn associated_items(&self, def_id: DefId) -> AssocItems; } impl<'tcx> SmirInterface for SmirContainer<'tcx, BridgeTys> { fn entry_fn(&self) -> Option { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let did = cx.entry_fn(); Some(tables.crate_item(did?)) } /// Retrieve all items of the local crate that have a MIR associated with them. fn all_local_items(&self) -> CrateItems { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); cx.all_local_items().iter().map(|did| tables.crate_item(*did)).collect() } /// Retrieve the body of a function. /// This function will panic if the body is not available. fn mir_body(&self, item: DefId) -> mir::Body { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let did = tables[item]; cx.mir_body(did).stable(&mut *tables, cx) } /// Check whether the body of a function is available. fn has_body(&self, item: DefId) -> bool { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let def = item.internal(&mut *tables, cx.tcx); cx.has_body(def) } fn foreign_modules(&self, crate_num: CrateNum) -> Vec { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); cx.foreign_modules(crate_num.internal(&mut *tables, cx.tcx)) .iter() .map(|did| tables.foreign_module_def(*did)) .collect() } /// Retrieve all functions defined in this crate. fn crate_functions(&self, crate_num: CrateNum) -> Vec { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let krate = crate_num.internal(&mut *tables, cx.tcx); cx.crate_functions(krate).iter().map(|did| tables.fn_def(*did)).collect() } /// Retrieve all static items defined in this crate. fn crate_statics(&self, crate_num: CrateNum) -> Vec { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let krate = crate_num.internal(&mut *tables, cx.tcx); cx.crate_statics(krate).iter().map(|did| tables.static_def(*did)).collect() } fn foreign_module(&self, mod_def: ForeignModuleDef) -> ForeignModule { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let did = tables[mod_def.def_id()]; cx.foreign_module(did).stable(&mut *tables, cx) } fn foreign_items(&self, mod_def: ForeignModuleDef) -> Vec { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let did = tables[mod_def.def_id()]; cx.foreign_items(did).iter().map(|did| tables.foreign_def(*did)).collect() } fn all_trait_decls(&self) -> TraitDecls { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); cx.all_trait_decls().map(|did| tables.trait_def(did)).collect() } fn trait_decls(&self, crate_num: CrateNum) -> TraitDecls { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let krate = crate_num.internal(&mut *tables, cx.tcx); cx.trait_decls(krate).iter().map(|did| tables.trait_def(*did)).collect() } fn trait_decl(&self, trait_def: &TraitDef) -> TraitDecl { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let did = tables[trait_def.0]; cx.trait_decl(did).stable(&mut *tables, cx) } fn all_trait_impls(&self) -> ImplTraitDecls { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); cx.all_trait_impls().iter().map(|did| tables.impl_def(*did)).collect() } fn trait_impls(&self, crate_num: CrateNum) -> ImplTraitDecls { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let krate = crate_num.internal(&mut *tables, cx.tcx); cx.trait_impls(krate).iter().map(|did| tables.impl_def(*did)).collect() } fn trait_impl(&self, trait_impl: &ImplDef) -> ImplTrait { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let did = tables[trait_impl.0]; cx.trait_impl(did).stable(&mut *tables, cx) } fn generics_of(&self, def_id: DefId) -> Generics { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let did = tables[def_id]; cx.generics_of(did).stable(&mut *tables, cx) } fn predicates_of(&self, def_id: DefId) -> GenericPredicates { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let did = tables[def_id]; let (parent, kinds) = cx.predicates_of(did); crate::ty::GenericPredicates { parent: parent.map(|did| tables.trait_def(did)), predicates: kinds .iter() .map(|(kind, span)| (kind.stable(&mut *tables, cx), span.stable(&mut *tables, cx))) .collect(), } } fn explicit_predicates_of(&self, def_id: DefId) -> GenericPredicates { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let did = tables[def_id]; let (parent, kinds) = cx.explicit_predicates_of(did); crate::ty::GenericPredicates { parent: parent.map(|did| tables.trait_def(did)), predicates: kinds .iter() .map(|(kind, span)| (kind.stable(&mut *tables, cx), span.stable(&mut *tables, cx))) .collect(), } } /// Get information about the local crate. fn local_crate(&self) -> Crate { let cx = &*self.cx.borrow(); smir_crate(cx, cx.local_crate_num()) } /// Retrieve a list of all external crates. fn external_crates(&self) -> Vec { let cx = &*self.cx.borrow(); cx.external_crates().iter().map(|crate_num| smir_crate(cx, *crate_num)).collect() } /// Find a crate with the given name. fn find_crates(&self, name: &str) -> Vec { let cx = &*self.cx.borrow(); cx.find_crates(name).iter().map(|crate_num| smir_crate(cx, *crate_num)).collect() } /// Returns the name of given `DefId`. fn def_name(&self, def_id: DefId, trimmed: bool) -> Symbol { let tables = self.tables.borrow(); let cx = &*self.cx.borrow(); let did = tables[def_id]; cx.def_name(did, trimmed) } /// Return registered tool attributes with the given attribute name. /// /// FIXME(jdonszelmann): may panic on non-tool attributes. After more attribute work, non-tool /// attributes will simply return an empty list. /// /// Single segmented name like `#[clippy]` is specified as `&["clippy".to_string()]`. /// Multi-segmented name like `#[rustfmt::skip]` is specified as `&["rustfmt".to_string(), "skip".to_string()]`. fn tool_attrs(&self, def_id: DefId, attr: &[Symbol]) -> Vec { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let did = tables[def_id]; cx.tool_attrs(did, attr) .into_iter() .map(|(attr_str, span)| Attribute::new(attr_str, span.stable(&mut *tables, cx))) .collect() } /// Get all tool attributes of a definition. fn all_tool_attrs(&self, def_id: DefId) -> Vec { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let did = tables[def_id]; cx.all_tool_attrs(did) .into_iter() .map(|(attr_str, span)| Attribute::new(attr_str, span.stable(&mut *tables, cx))) .collect() } /// Returns printable, human readable form of `Span`. fn span_to_string(&self, span: Span) -> String { let tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let sp = tables.spans[span]; cx.span_to_string(sp) } /// Return filename from given `Span`, for diagnostic purposes. fn get_filename(&self, span: &Span) -> Filename { let tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let sp = tables.spans[*span]; cx.get_filename(sp) } /// Return lines corresponding to this `Span`. fn get_lines(&self, span: &Span) -> LineInfo { let tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let sp = tables.spans[*span]; let lines = cx.get_lines(sp); LineInfo::from(lines) } /// Returns the `kind` of given `DefId`. fn item_kind(&self, item: CrateItem) -> ItemKind { let tables = self.tables.borrow(); let cx = &*self.cx.borrow(); let did = tables[item.0]; new_item_kind(cx.def_kind(did)) } /// Returns whether this is a foreign item. fn is_foreign_item(&self, item: DefId) -> bool { let tables = self.tables.borrow(); let cx = &*self.cx.borrow(); let did = tables[item]; cx.is_foreign_item(did) } /// Returns the kind of a given foreign item. fn foreign_item_kind(&self, def: ForeignDef) -> ForeignItemKind { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let def_id = tables[def.def_id()]; let def_kind = cx.foreign_item_kind(def_id); match def_kind { DefKind::Fn => ForeignItemKind::Fn(tables.fn_def(def_id)), DefKind::Static { .. } => ForeignItemKind::Static(tables.static_def(def_id)), DefKind::ForeignTy => { use rustc_public_bridge::context::SmirTy; ForeignItemKind::Type(tables.intern_ty(cx.new_foreign(def_id))) } def_kind => unreachable!("Unexpected kind for a foreign item: {:?}", def_kind), } } /// Returns the kind of a given algebraic data type. fn adt_kind(&self, def: AdtDef) -> AdtKind { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); cx.adt_kind(def.internal(&mut *tables, cx.tcx)).stable(&mut *tables, cx) } /// Returns if the ADT is a box. fn adt_is_box(&self, def: AdtDef) -> bool { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); cx.adt_is_box(def.internal(&mut *tables, cx.tcx)) } /// Returns whether this ADT is simd. fn adt_is_simd(&self, def: AdtDef) -> bool { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); cx.adt_is_simd(def.internal(&mut *tables, cx.tcx)) } /// Returns whether this definition is a C string. fn adt_is_cstr(&self, def: AdtDef) -> bool { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); cx.adt_is_cstr(def.0.internal(&mut *tables, cx.tcx)) } /// Returns the representation options for this ADT fn adt_repr(&self, def: AdtDef) -> ReprOptions { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); cx.adt_repr(def.internal(&mut *tables, cx.tcx)).stable(&mut *tables, cx) } /// Retrieve the function signature for the given generic arguments. fn fn_sig(&self, def: FnDef, args: &GenericArgs) -> PolyFnSig { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let def_id = def.0.internal(&mut *tables, cx.tcx); let args_ref = args.internal(&mut *tables, cx.tcx); cx.fn_sig(def_id, args_ref).stable(&mut *tables, cx) } /// Retrieve the intrinsic definition if the item corresponds one. fn intrinsic(&self, item: DefId) -> Option { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let def_id = item.internal(&mut *tables, cx.tcx); cx.intrinsic(def_id).map(|_| IntrinsicDef(item)) } /// Retrieve the plain function name of an intrinsic. fn intrinsic_name(&self, def: IntrinsicDef) -> Symbol { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let def_id = def.0.internal(&mut *tables, cx.tcx); cx.intrinsic_name(def_id) } /// Retrieve the closure signature for the given generic arguments. fn closure_sig(&self, args: &GenericArgs) -> PolyFnSig { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let args_ref = args.internal(&mut *tables, cx.tcx); cx.closure_sig(args_ref).stable(&mut *tables, cx) } /// The number of variants in this ADT. fn adt_variants_len(&self, def: AdtDef) -> usize { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); cx.adt_variants_len(def.internal(&mut *tables, cx.tcx)) } /// Discriminant for a given variant index of AdtDef. fn adt_discr_for_variant(&self, adt: AdtDef, variant: VariantIdx) -> Discr { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); cx.adt_discr_for_variant( adt.internal(&mut *tables, cx.tcx), variant.internal(&mut *tables, cx.tcx), ) .stable(&mut *tables, cx) } /// Discriminant for a given variand index and args of a coroutine. fn coroutine_discr_for_variant( &self, coroutine: CoroutineDef, args: &GenericArgs, variant: VariantIdx, ) -> Discr { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let tcx = cx.tcx; let def = coroutine.def_id().internal(&mut *tables, tcx); let args_ref = args.internal(&mut *tables, tcx); cx.coroutine_discr_for_variant(def, args_ref, variant.internal(&mut *tables, tcx)) .stable(&mut *tables, cx) } /// The name of a variant. fn variant_name(&self, def: VariantDef) -> Symbol { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); cx.variant_name(def.internal(&mut *tables, cx.tcx)) } fn variant_fields(&self, def: VariantDef) -> Vec { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); def.internal(&mut *tables, cx.tcx) .fields .iter() .map(|f| f.stable(&mut *tables, cx)) .collect() } /// Evaluate constant as a target usize. fn eval_target_usize(&self, mir_const: &MirConst) -> Result { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let cnst = mir_const.internal(&mut *tables, cx.tcx); cx.eval_target_usize(cnst) } fn eval_target_usize_ty(&self, ty_const: &TyConst) -> Result { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let cnst = ty_const.internal(&mut *tables, cx.tcx); cx.eval_target_usize_ty(cnst) } /// Create a new zero-sized constant. fn try_new_const_zst(&self, ty: Ty) -> Result { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let ty_internal = ty.internal(&mut *tables, cx.tcx); cx.try_new_const_zst(ty_internal).map(|cnst| cnst.stable(&mut *tables, cx)) } /// Create a new constant that represents the given string value. fn new_const_str(&self, value: &str) -> MirConst { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); cx.new_const_str(value).stable(&mut *tables, cx) } /// Create a new constant that represents the given boolean value. fn new_const_bool(&self, value: bool) -> MirConst { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); cx.new_const_bool(value).stable(&mut *tables, cx) } /// Create a new constant that represents the given value. fn try_new_const_uint(&self, value: u128, uint_ty: UintTy) -> Result { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let ty = cx.ty_new_uint(uint_ty.internal(&mut *tables, cx.tcx)); cx.try_new_const_uint(value, ty).map(|cnst| cnst.stable(&mut *tables, cx)) } fn try_new_ty_const_uint(&self, value: u128, uint_ty: UintTy) -> Result { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let ty = cx.ty_new_uint(uint_ty.internal(&mut *tables, cx.tcx)); cx.try_new_ty_const_uint(value, ty).map(|cnst| cnst.stable(&mut *tables, cx)) } /// Create a new type from the given kind. fn new_rigid_ty(&self, kind: RigidTy) -> Ty { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let internal_kind = kind.internal(&mut *tables, cx.tcx); cx.new_rigid_ty(internal_kind).stable(&mut *tables, cx) } /// Create a new box type, `Box`, for the given inner type `T`. fn new_box_ty(&self, ty: Ty) -> Ty { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let inner = ty.internal(&mut *tables, cx.tcx); cx.new_box_ty(inner).stable(&mut *tables, cx) } /// Returns the type of given crate item. fn def_ty(&self, item: DefId) -> Ty { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let inner = item.internal(&mut *tables, cx.tcx); cx.def_ty(inner).stable(&mut *tables, cx) } /// Returns the type of given definition instantiated with the given arguments. fn def_ty_with_args(&self, item: DefId, args: &GenericArgs) -> Ty { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let inner = item.internal(&mut *tables, cx.tcx); let args_ref = args.internal(&mut *tables, cx.tcx); cx.def_ty_with_args(inner, args_ref).stable(&mut *tables, cx) } /// Returns literal value of a const as a string. fn mir_const_pretty(&self, cnst: &MirConst) -> String { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); cnst.internal(&mut *tables, cx.tcx).to_string() } /// `Span` of an item. fn span_of_an_item(&self, def_id: DefId) -> Span { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let did = tables[def_id]; cx.span_of_an_item(did).stable(&mut *tables, cx) } fn ty_const_pretty(&self, ct: TyConstId) -> String { let tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); cx.ty_const_pretty(tables.ty_consts[ct]) } /// Obtain the representation of a type. fn ty_pretty(&self, ty: Ty) -> String { let tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); cx.ty_pretty(tables.types[ty]) } /// Obtain the kind of a type. fn ty_kind(&self, ty: Ty) -> TyKind { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); cx.ty_kind(tables.types[ty]).stable(&mut *tables, cx) } /// Get the discriminant Ty for this Ty if there's one. fn rigid_ty_discriminant_ty(&self, ty: &RigidTy) -> Ty { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let internal_kind = ty.internal(&mut *tables, cx.tcx); cx.rigid_ty_discriminant_ty(internal_kind).stable(&mut *tables, cx) } /// Get the body of an Instance which is already monomorphized. fn instance_body(&self, instance: InstanceDef) -> Option { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let instance = tables.instances[instance]; cx.instance_body(instance).map(|body| body.stable(&mut *tables, cx)) } /// Get the instance type with generic instantiations applied and lifetimes erased. fn instance_ty(&self, instance: InstanceDef) -> Ty { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let instance = tables.instances[instance]; cx.instance_ty(instance).stable(&mut *tables, cx) } /// Get the instantiation types. fn instance_args(&self, def: InstanceDef) -> GenericArgs { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let instance = tables.instances[def]; cx.instance_args(instance).stable(&mut *tables, cx) } /// Get the instance. fn instance_def_id(&self, instance: InstanceDef) -> DefId { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let instance = tables.instances[instance]; cx.instance_def_id(instance, &mut *tables) } /// Get the instance mangled name. fn instance_mangled_name(&self, instance: InstanceDef) -> Symbol { let tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let instance = tables.instances[instance]; cx.instance_mangled_name(instance) } /// Check if this is an empty DropGlue shim. fn is_empty_drop_shim(&self, def: InstanceDef) -> bool { let tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let instance = tables.instances[def]; cx.is_empty_drop_shim(instance) } /// Convert a non-generic crate item into an instance. /// This function will panic if the item is generic. fn mono_instance(&self, def_id: DefId) -> Instance { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let did = tables[def_id]; cx.mono_instance(did).stable(&mut *tables, cx) } /// Item requires monomorphization. fn requires_monomorphization(&self, def_id: DefId) -> bool { let tables = self.tables.borrow(); let cx = &*self.cx.borrow(); let did = tables[def_id]; cx.requires_monomorphization(did) } /// Resolve an instance from the given function definition and generic arguments. fn resolve_instance(&self, def: FnDef, args: &GenericArgs) -> Option { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let def_id = def.0.internal(&mut *tables, cx.tcx); let args_ref = args.internal(&mut *tables, cx.tcx); cx.resolve_instance(def_id, args_ref).map(|inst| inst.stable(&mut *tables, cx)) } /// Resolve an instance for drop_in_place for the given type. fn resolve_drop_in_place(&self, ty: Ty) -> Instance { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let internal_ty = ty.internal(&mut *tables, cx.tcx); cx.resolve_drop_in_place(internal_ty).stable(&mut *tables, cx) } /// Resolve instance for a function pointer. fn resolve_for_fn_ptr(&self, def: FnDef, args: &GenericArgs) -> Option { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let def_id = def.0.internal(&mut *tables, cx.tcx); let args_ref = args.internal(&mut *tables, cx.tcx); cx.resolve_for_fn_ptr(def_id, args_ref).stable(&mut *tables, cx) } /// Resolve instance for a closure with the requested type. fn resolve_closure( &self, def: ClosureDef, args: &GenericArgs, kind: ClosureKind, ) -> Option { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let def_id = def.0.internal(&mut *tables, cx.tcx); let args_ref = args.internal(&mut *tables, cx.tcx); let closure_kind = kind.internal(&mut *tables, cx.tcx); cx.resolve_closure(def_id, args_ref, closure_kind).map(|inst| inst.stable(&mut *tables, cx)) } /// Evaluate a static's initializer. fn eval_static_initializer(&self, def: StaticDef) -> Result { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let def_id = def.0.internal(&mut *tables, cx.tcx); cx.eval_static_initializer(def_id).stable(&mut *tables, cx) } /// Try to evaluate an instance into a constant. fn eval_instance(&self, def: InstanceDef, const_ty: Ty) -> Result { let mut tables = self.tables.borrow_mut(); let instance = tables.instances[def]; let cx = &*self.cx.borrow(); let const_ty = const_ty.internal(&mut *tables, cx.tcx); cx.eval_instance(instance) .map(|const_val| alloc::try_new_allocation(const_ty, const_val, &mut *tables, cx)) .map_err(|e| e.stable(&mut *tables, cx))? } /// Retrieve global allocation for the given allocation ID. fn global_alloc(&self, id: AllocId) -> GlobalAlloc { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let alloc_id = id.internal(&mut *tables, cx.tcx); cx.global_alloc(alloc_id).stable(&mut *tables, cx) } /// Retrieve the id for the virtual table. fn vtable_allocation(&self, global_alloc: &GlobalAlloc) -> Option { let mut tables = self.tables.borrow_mut(); let GlobalAlloc::VTable(ty, trait_ref) = global_alloc else { return None; }; let cx = &*self.cx.borrow(); let ty = ty.internal(&mut *tables, cx.tcx); let trait_ref = trait_ref.internal(&mut *tables, cx.tcx); let alloc_id = cx.vtable_allocation(ty, trait_ref); Some(alloc_id.stable(&mut *tables, cx)) } fn krate(&self, def_id: DefId) -> Crate { let tables = self.tables.borrow(); let cx = &*self.cx.borrow(); smir_crate(cx, tables[def_id].krate) } fn instance_name(&self, def: InstanceDef, trimmed: bool) -> Symbol { let tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let instance = tables.instances[def]; cx.instance_name(instance, trimmed) } /// Return information about the target machine. fn target_info(&self) -> MachineInfo { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); MachineInfo { endian: cx.target_endian().stable(&mut *tables, cx), pointer_width: MachineSize::from_bits(cx.target_pointer_size()), } } /// Get an instance ABI. fn instance_abi(&self, def: InstanceDef) -> Result { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let instance = tables.instances[def]; cx.instance_abi(instance).map(|fn_abi| fn_abi.stable(&mut *tables, cx)) } /// Get the ABI of a function pointer. fn fn_ptr_abi(&self, fn_ptr: PolyFnSig) -> Result { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let sig = fn_ptr.internal(&mut *tables, cx.tcx); cx.fn_ptr_abi(sig).map(|fn_abi| fn_abi.stable(&mut *tables, cx)) } /// Get the layout of a type. fn ty_layout(&self, ty: Ty) -> Result { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let internal_ty = ty.internal(&mut *tables, cx.tcx); cx.ty_layout(internal_ty).map(|layout| layout.stable(&mut *tables, cx)) } /// Get the layout shape. fn layout_shape(&self, id: Layout) -> LayoutShape { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); id.internal(&mut *tables, cx.tcx).0.stable(&mut *tables, cx) } /// Get a debug string representation of a place. fn place_pretty(&self, place: &Place) -> String { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); format!("{:?}", place.internal(&mut *tables, cx.tcx)) } /// Get the resulting type of binary operation. fn binop_ty(&self, bin_op: BinOp, rhs: Ty, lhs: Ty) -> Ty { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let rhs_internal = rhs.internal(&mut *tables, cx.tcx); let lhs_internal = lhs.internal(&mut *tables, cx.tcx); let bin_op_internal = bin_op.internal(&mut *tables, cx.tcx); cx.binop_ty(bin_op_internal, rhs_internal, lhs_internal).stable(&mut *tables, cx) } /// Get the resulting type of unary operation. fn unop_ty(&self, un_op: UnOp, arg: Ty) -> Ty { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let un_op = un_op.internal(&mut *tables, cx.tcx); let arg = arg.internal(&mut *tables, cx.tcx); cx.unop_ty(un_op, arg).stable(&mut *tables, cx) } /// Get all associated items of a definition. fn associated_items(&self, def_id: DefId) -> AssocItems { let mut tables = self.tables.borrow_mut(); let cx = &*self.cx.borrow(); let did = tables[def_id]; cx.associated_items(did).iter().map(|assoc| assoc.stable(&mut *tables, cx)).collect() } } // A thread local variable that stores a pointer to [`SmirInterface`]. scoped_tls::scoped_thread_local!(static TLV: Cell<*const ()>); pub(crate) fn run(interface: &dyn SmirInterface, f: F) -> Result where F: FnOnce() -> T, { if TLV.is_set() { Err(Error::from("StableMIR already running")) } else { let ptr: *const () = (&raw const interface) as _; TLV.set(&Cell::new(ptr), || Ok(f())) } } /// Execute the given function with access the [`SmirInterface`]. /// /// I.e., This function will load the current interface and calls a function with it. /// Do not nest these, as that will ICE. pub(crate) fn with(f: impl FnOnce(&dyn SmirInterface) -> R) -> R { assert!(TLV.is_set()); TLV.with(|tlv| { let ptr = tlv.get(); assert!(!ptr.is_null()); f(unsafe { *(ptr as *const &dyn SmirInterface) }) }) } fn smir_crate<'tcx>( cx: &SmirCtxt<'tcx, BridgeTys>, crate_num: rustc_span::def_id::CrateNum, ) -> Crate { let name = cx.crate_name(crate_num); let is_local = cx.crate_is_local(crate_num); let id = cx.crate_num_id(crate_num); debug!(?name, ?crate_num, "smir_crate"); Crate { id, name, is_local } }