//! Module that implements the bridge between Stable MIR and internal compiler MIR. //! //! For that, we define APIs that will temporarily be public to 3P that exposes rustc internal APIs //! until stable MIR is complete. use std::cell::{Cell, RefCell}; use rustc_middle::ty::TyCtxt; use rustc_public_bridge::context::SmirCtxt; use rustc_public_bridge::{Bridge, SmirContainer, Tables}; use rustc_span::def_id::CrateNum; use scoped_tls::scoped_thread_local; use crate::Error; use crate::unstable::{RustcInternal, Stable}; pub mod pretty; /// Convert an internal Rust compiler item into its stable counterpart, if one exists. /// /// # Warning /// /// This function is unstable, and its behavior may change at any point. /// E.g.: Items that were previously supported, may no longer be supported, or its translation may /// change. /// /// # Panics /// /// This function will panic if StableMIR has not been properly initialized. pub fn stable<'tcx, S: Stable<'tcx>>(item: S) -> S::T { with_container(|tables, cx| item.stable(tables, cx)) } /// Convert a stable item into its internal Rust compiler counterpart, if one exists. /// /// # Warning /// /// This function is unstable, and it's behavior may change at any point. /// Not every stable item can be converted to an internal one. /// Furthermore, items that were previously supported, may no longer be supported in newer versions. /// /// # Panics /// /// This function will panic if StableMIR has not been properly initialized. pub fn internal<'tcx, S>(tcx: TyCtxt<'tcx>, item: S) -> S::T<'tcx> where S: RustcInternal, { // The tcx argument ensures that the item won't outlive the type context. // See https://github.com/rust-lang/rust/pull/120128/commits/9aace6723572438a94378451793ca37deb768e72 // for more details. with_container(|tables, _| item.internal(tables, tcx)) } pub fn crate_num(item: &crate::Crate) -> CrateNum { item.id.into() } // A thread local variable that stores a pointer to the tables mapping between TyCtxt // datastructures and stable MIR datastructures scoped_thread_local! (static TLV: Cell<*const ()>); pub(crate) fn init<'tcx, F, T, B: Bridge>(container: &SmirContainer<'tcx, B>, f: F) -> T where F: FnOnce() -> T, { assert!(!TLV.is_set()); let ptr = container as *const _ as *const (); TLV.set(&Cell::new(ptr), || f()) } /// Loads the current context and calls a function with it. /// Do not nest these, as that will ICE. pub(crate) fn with_container( f: impl for<'tcx> FnOnce(&mut Tables<'tcx, B>, &SmirCtxt<'tcx, B>) -> R, ) -> R { assert!(TLV.is_set()); TLV.with(|tlv| { let ptr = tlv.get(); assert!(!ptr.is_null()); let container = ptr as *const SmirContainer<'_, B>; let mut tables = unsafe { (*container).tables.borrow_mut() }; let cx = unsafe { (*container).cx.borrow() }; f(&mut *tables, &*cx) }) } pub fn run(tcx: TyCtxt<'_>, f: F) -> Result where F: FnOnce() -> T, { let smir_cx = RefCell::new(SmirCtxt::new(tcx)); let container = SmirContainer { tables: RefCell::new(Tables::default()), cx: smir_cx }; crate::compiler_interface::run(&container, || init(&container, f)) } /// Instantiate and run the compiler with the provided arguments and callback. /// /// The callback will be invoked after the compiler ran all its analyses, but before code generation. /// Note that this macro accepts two different formats for the callback: /// 1. An ident that resolves to a function that accepts no argument and returns `ControlFlow` /// ```ignore(needs-extern-crate) /// # extern crate rustc_driver; /// # extern crate rustc_interface; /// # extern crate rustc_middle; /// # #[macro_use] /// # extern crate rustc_public; /// # /// # fn main() { /// # use std::ops::ControlFlow; /// # use rustc_public::CompilerError; /// fn analyze_code() -> ControlFlow<(), ()> { /// // Your code goes in here. /// # ControlFlow::Continue(()) /// } /// # let args = &["--verbose".to_string()]; /// let result = run!(args, analyze_code); /// # assert_eq!(result, Err(CompilerError::Skipped)) /// # } /// ``` /// 2. A closure expression: /// ```ignore(needs-extern-crate) /// # extern crate rustc_driver; /// # extern crate rustc_interface; /// # extern crate rustc_middle; /// # #[macro_use] /// # extern crate rustc_public; /// # /// # fn main() { /// # use std::ops::ControlFlow; /// # use rustc_public::CompilerError; /// fn analyze_code(extra_args: Vec) -> ControlFlow<(), ()> { /// # let _ = extra_args; /// // Your code goes in here. /// # ControlFlow::Continue(()) /// } /// # let args = &["--verbose".to_string()]; /// # let extra_args = vec![]; /// let result = run!(args, || analyze_code(extra_args)); /// # assert_eq!(result, Err(CompilerError::Skipped)) /// # } /// ``` #[macro_export] macro_rules! run { ($args:expr, $callback_fn:ident) => { $crate::run_driver!($args, || $callback_fn()) }; ($args:expr, $callback:expr) => { $crate::run_driver!($args, $callback) }; } /// Instantiate and run the compiler with the provided arguments and callback. /// /// This is similar to `run` but it invokes the callback with the compiler's `TyCtxt`, /// which can be used to invoke internal APIs. #[macro_export] macro_rules! run_with_tcx { ($args:expr, $callback_fn:ident) => { $crate::run_driver!($args, |tcx| $callback_fn(tcx), with_tcx) }; ($args:expr, $callback:expr) => { $crate::run_driver!($args, $callback, with_tcx) }; } /// Optionally include an ident. This is needed due to macro hygiene. #[macro_export] #[doc(hidden)] macro_rules! optional { (with_tcx $ident:ident) => { $ident }; } /// Prefer using [run!] and [run_with_tcx] instead. /// /// This macro implements the instantiation of a StableMIR driver, and it will invoke /// the given callback after the compiler analyses. /// /// The third argument determines whether the callback requires `tcx` as an argument. #[macro_export] #[doc(hidden)] macro_rules! run_driver { ($args:expr, $callback:expr $(, $with_tcx:ident)?) => {{ use rustc_driver::{Callbacks, Compilation, run_compiler}; use rustc_middle::ty::TyCtxt; use rustc_interface::interface; use rustc_public::rustc_internal; use rustc_public::CompilerError; use std::ops::ControlFlow; pub struct StableMir ControlFlow> where B: Send, C: Send, F: FnOnce($($crate::optional!($with_tcx TyCtxt))?) -> ControlFlow + Send, { callback: Option, result: Option>, } impl StableMir where B: Send, C: Send, F: FnOnce($($crate::optional!($with_tcx TyCtxt))?) -> ControlFlow + Send, { /// Creates a new `StableMir` instance, with given test_function and arguments. pub fn new(callback: F) -> Self { StableMir { callback: Some(callback), result: None } } /// Runs the compiler against given target and tests it with `test_function` pub fn run(&mut self, args: &[String]) -> Result> { let compiler_result = rustc_driver::catch_fatal_errors(|| -> interface::Result::<()> { run_compiler(&args, self); Ok(()) }); match (compiler_result, self.result.take()) { (Ok(Ok(())), Some(ControlFlow::Continue(value))) => Ok(value), (Ok(Ok(())), Some(ControlFlow::Break(value))) => { Err(CompilerError::Interrupted(value)) } (Ok(Ok(_)), None) => Err(CompilerError::Skipped), // Two cases here: // - `run` finished normally and returned `Err` // - `run` panicked with `FatalErr` // You might think that normal compile errors cause the former, and // ICEs cause the latter. But some normal compiler errors also cause // the latter. So we can't meaningfully distinguish them, and group // them together. (Ok(Err(_)), _) | (Err(_), _) => Err(CompilerError::Failed), } } } impl Callbacks for StableMir where B: Send, C: Send, F: FnOnce($($crate::optional!($with_tcx TyCtxt))?) -> ControlFlow + Send, { /// Called after analysis. Return value instructs the compiler whether to /// continue the compilation afterwards (defaults to `Compilation::Continue`) fn after_analysis<'tcx>( &mut self, _compiler: &interface::Compiler, tcx: TyCtxt<'tcx>, ) -> Compilation { if let Some(callback) = self.callback.take() { rustc_internal::run(tcx, || { self.result = Some(callback($($crate::optional!($with_tcx tcx))?)); }) .unwrap(); if self.result.as_ref().is_some_and(|val| val.is_continue()) { Compilation::Continue } else { Compilation::Stop } } else { Compilation::Continue } } } StableMir::new($callback).run($args) }}; }