//! Implementation of StableMIR Context. #![allow(rustc::usage_of_qualified_ty)] use std::iter; use rustc_abi::{Endian, Layout, ReprOptions}; use rustc_hir::def::DefKind; use rustc_hir::{Attribute, LangItem}; use rustc_middle::mir::interpret::{AllocId, ConstAllocation, ErrorHandled, GlobalAlloc, Scalar}; use rustc_middle::mir::{BinOp, Body, Const as MirConst, ConstValue, UnOp}; use rustc_middle::ty::layout::{FnAbiOf, LayoutOf}; use rustc_middle::ty::print::{with_forced_trimmed_paths, with_no_trimmed_paths}; use rustc_middle::ty::util::Discr; use rustc_middle::ty::{ AdtDef, AdtKind, AssocItem, Binder, ClosureKind, CoroutineArgsExt, EarlyBinder, ExistentialTraitRef, FnSig, GenericArgsRef, Instance, InstanceKind, IntrinsicDef, List, PolyFnSig, ScalarInt, TraitDef, TraitRef, Ty, TyCtxt, TyKind, TypeVisitableExt, UintTy, ValTree, VariantDef, }; use rustc_middle::{mir, ty}; use rustc_session::cstore::ForeignModule; use rustc_span::def_id::{CrateNum, DefId, LOCAL_CRATE}; use rustc_span::{FileNameDisplayPreference, Span, Symbol}; use rustc_target::callconv::FnAbi; use super::{SmirAllocRange, SmirCtxt, SmirTy, SmirTypingEnv}; use crate::builder::BodyBuilder; use crate::{Bridge, SmirError, Tables, filter_def_ids}; impl<'tcx, B: Bridge> SmirTy<'tcx> for SmirCtxt<'tcx, B> { fn new_foreign(&self, def_id: DefId) -> ty::Ty<'tcx> { ty::Ty::new_foreign(self.tcx, def_id) } } impl<'tcx, B: Bridge> SmirTypingEnv<'tcx> for SmirCtxt<'tcx, B> { fn fully_monomorphized(&self) -> ty::TypingEnv<'tcx> { ty::TypingEnv::fully_monomorphized() } } impl<'tcx, B: Bridge> SmirAllocRange<'tcx> for SmirCtxt<'tcx, B> { fn alloc_range( &self, offset: rustc_abi::Size, size: rustc_abi::Size, ) -> mir::interpret::AllocRange { rustc_middle::mir::interpret::alloc_range(offset, size) } } impl<'tcx, B: Bridge> SmirCtxt<'tcx, B> { pub fn lift>>(&self, value: T) -> Option { self.tcx.lift(value) } pub fn adt_def(&self, def_id: DefId) -> AdtDef<'tcx> { self.tcx.adt_def(def_id) } pub fn coroutine_movability(&self, def_id: DefId) -> ty::Movability { self.tcx.coroutine_movability(def_id) } pub fn valtree_to_const_val(&self, key: ty::Value<'tcx>) -> ConstValue<'tcx> { self.tcx.valtree_to_const_val(key) } /// Return whether the instance as a body available. /// /// Items and intrinsics may have a body available from its definition. /// Shims body may be generated depending on their type. pub(crate) fn instance_has_body(&self, instance: Instance<'tcx>) -> bool { let def_id = instance.def_id(); self.item_has_body(def_id) || !matches!( instance.def, ty::InstanceKind::Virtual(..) | ty::InstanceKind::Intrinsic(..) | ty::InstanceKind::Item(..) ) } /// Return whether the item has a body defined by the user. /// /// Note that intrinsics may have a placeholder body that shouldn't be used in practice. /// In StableMIR, we handle this case as if the body is not available. pub(crate) fn item_has_body(&self, def_id: DefId) -> bool { let must_override = if let Some(intrinsic) = self.tcx.intrinsic(def_id) { intrinsic.must_be_overridden } else { false }; !must_override && self.tcx.is_mir_available(def_id) } fn filter_fn_def(&self, def_id: DefId) -> Option { if matches!(self.tcx.def_kind(def_id), DefKind::Fn | DefKind::AssocFn) { Some(def_id) } else { None } } fn filter_static_def(&self, def_id: DefId) -> Option { matches!(self.tcx.def_kind(def_id), DefKind::Static { .. }).then(|| def_id) } pub fn target_endian(&self) -> Endian { self.tcx.data_layout.endian } pub fn target_pointer_size(&self) -> usize { self.tcx.data_layout.pointer_size().bits().try_into().unwrap() } pub fn entry_fn(&self) -> Option { Some(self.tcx.entry_fn(())?.0) } /// Retrieve all items of the local crate that have a MIR associated with them. pub fn all_local_items(&self) -> Vec { self.tcx.mir_keys(()).iter().map(|item| item.to_def_id()).collect() } /// Retrieve the body of a function. /// This function will panic if the body is not available. pub fn mir_body(&self, item: DefId) -> &'tcx Body<'tcx> { self.tcx.instance_mir(InstanceKind::Item(item)) } /// Check whether the body of a function is available. pub fn has_body(&self, def: DefId) -> bool { self.item_has_body(def) } pub fn foreign_modules(&self, crate_num: CrateNum) -> Vec { self.tcx.foreign_modules(crate_num).keys().map(|mod_def_id| *mod_def_id).collect() } /// Retrieve all functions defined in this crate. pub fn crate_functions(&self, crate_num: CrateNum) -> Vec { filter_def_ids(self.tcx, crate_num, |def_id| self.filter_fn_def(def_id)) } /// Retrieve all static items defined in this crate. pub fn crate_statics(&self, crate_num: CrateNum) -> Vec { filter_def_ids(self.tcx, crate_num, |def_id| self.filter_static_def(def_id)) } pub fn foreign_module(&self, mod_def: DefId) -> &ForeignModule { self.tcx.foreign_modules(mod_def.krate).get(&mod_def).unwrap() } pub fn foreign_items(&self, mod_def: DefId) -> Vec { self.tcx .foreign_modules(mod_def.krate) .get(&mod_def) .unwrap() .foreign_items .iter() .map(|item_def| *item_def) .collect() } pub fn all_trait_decls(&self) -> impl Iterator { self.tcx.all_traits_including_private() } pub fn trait_decls(&self, crate_num: CrateNum) -> Vec { self.tcx.traits(crate_num).iter().map(|trait_def_id| *trait_def_id).collect() } pub fn trait_decl(&self, trait_def: DefId) -> &'tcx TraitDef { self.tcx.trait_def(trait_def) } pub fn all_trait_impls(&self) -> Vec { iter::once(LOCAL_CRATE) .chain(self.tcx.crates(()).iter().copied()) .flat_map(|cnum| self.tcx.trait_impls_in_crate(cnum).iter()) .map(|impl_def_id| *impl_def_id) .collect() } pub fn trait_impls(&self, crate_num: CrateNum) -> Vec { self.tcx.trait_impls_in_crate(crate_num).iter().map(|impl_def_id| *impl_def_id).collect() } pub fn trait_impl(&self, impl_def: DefId) -> EarlyBinder<'tcx, TraitRef<'tcx>> { self.tcx.impl_trait_ref(impl_def).unwrap() } pub fn generics_of(&self, def_id: DefId) -> &'tcx ty::Generics { self.tcx.generics_of(def_id) } pub fn predicates_of( &self, def_id: DefId, ) -> (Option, Vec<(ty::PredicateKind<'tcx>, Span)>) { let ty::GenericPredicates { parent, predicates } = self.tcx.predicates_of(def_id); ( parent, predicates .iter() .map(|(clause, span)| (clause.as_predicate().kind().skip_binder(), *span)) .collect(), ) } pub fn explicit_predicates_of( &self, def_id: DefId, ) -> (Option, Vec<(ty::PredicateKind<'tcx>, Span)>) { let ty::GenericPredicates { parent, predicates } = self.tcx.explicit_predicates_of(def_id); ( parent, predicates .iter() .map(|(clause, span)| (clause.as_predicate().kind().skip_binder(), *span)) .collect(), ) } pub fn crate_name(&self, crate_num: CrateNum) -> String { self.tcx.crate_name(crate_num).to_string() } pub fn crate_is_local(&self, crate_num: CrateNum) -> bool { crate_num == LOCAL_CRATE } pub fn crate_num_id(&self, crate_num: CrateNum) -> usize { crate_num.into() } pub fn local_crate_num(&self) -> CrateNum { LOCAL_CRATE } /// Retrieve a list of all external crates. pub fn external_crates(&self) -> Vec { self.tcx.crates(()).iter().map(|crate_num| *crate_num).collect() } /// Find a crate with the given name. pub fn find_crates(&self, name: &str) -> Vec { let crates: Vec = [LOCAL_CRATE] .iter() .chain(self.tcx.crates(()).iter()) .filter_map(|crate_num| { let crate_name = self.tcx.crate_name(*crate_num).to_string(); (name == crate_name).then(|| *crate_num) }) .collect(); crates } /// Returns the name of given `DefId`. pub fn def_name(&self, def_id: DefId, trimmed: bool) -> String { if trimmed { with_forced_trimmed_paths!(self.tcx.def_path_str(def_id)) } else { with_no_trimmed_paths!(self.tcx.def_path_str(def_id)) } } /// Return registered tool attributes with the given attribute name. /// /// FIXME(jdonszelmann): may panic on non-tool attributes. After more attribute work, non-tool /// attributes will simply return an empty list. /// /// Single segmented name like `#[clippy]` is specified as `&["clippy".to_string()]`. /// Multi-segmented name like `#[rustfmt::skip]` is specified as `&["rustfmt".to_string(), "skip".to_string()]`. pub fn tool_attrs(&self, def_id: DefId, attr: &[String]) -> Vec<(String, Span)> { let attr_name: Vec<_> = attr.iter().map(|seg| Symbol::intern(&seg)).collect(); self.tcx .get_attrs_by_path(def_id, &attr_name) .filter_map(|attribute| { if let Attribute::Unparsed(u) = attribute { let attr_str = rustc_hir_pretty::attribute_to_string(&self.tcx, attribute); Some((attr_str, u.span)) } else { None } }) .collect() } /// Get all tool attributes of a definition. pub fn all_tool_attrs(&self, did: DefId) -> Vec<(String, Span)> { let attrs_iter = if let Some(did) = did.as_local() { self.tcx.hir_attrs(self.tcx.local_def_id_to_hir_id(did)).iter() } else { self.tcx.attrs_for_def(did).iter() }; attrs_iter .filter_map(|attribute| { if let Attribute::Unparsed(u) = attribute { let attr_str = rustc_hir_pretty::attribute_to_string(&self.tcx, attribute); Some((attr_str, u.span)) } else { None } }) .collect() } /// Returns printable, human readable form of `Span`. pub fn span_to_string(&self, span: Span) -> String { self.tcx.sess.source_map().span_to_diagnostic_string(span) } /// Return filename from given `Span`, for diagnostic purposes. pub fn get_filename(&self, span: Span) -> String { self.tcx .sess .source_map() .span_to_filename(span) .display(FileNameDisplayPreference::Local) .to_string() } /// Return lines corresponding to this `Span`. pub fn get_lines(&self, span: Span) -> (usize, usize, usize, usize) { let lines = &self.tcx.sess.source_map().span_to_location_info(span); (lines.1, lines.2, lines.3, lines.4) } /// Returns the `kind` of given `DefId`. pub fn def_kind(&self, item: DefId) -> DefKind { self.tcx.def_kind(item) } /// Returns whether this is a foreign item. pub fn is_foreign_item(&self, item: DefId) -> bool { self.tcx.is_foreign_item(item) } /// Returns the kind of a given foreign item. pub fn foreign_item_kind(&self, def_id: DefId) -> DefKind { self.tcx.def_kind(def_id) } /// Returns the kind of a given algebraic data type. pub fn adt_kind(&self, def: AdtDef<'tcx>) -> AdtKind { def.adt_kind() } /// Returns if the ADT is a box. pub fn adt_is_box(&self, def: AdtDef<'tcx>) -> bool { def.is_box() } /// Returns whether this ADT is simd. pub fn adt_is_simd(&self, def: AdtDef<'tcx>) -> bool { def.repr().simd() } /// Returns whether this definition is a C string. pub fn adt_is_cstr(&self, def_id: DefId) -> bool { self.tcx.is_lang_item(def_id, LangItem::CStr) } /// Returns the representation options for this ADT. pub fn adt_repr(&self, def: AdtDef<'tcx>) -> ReprOptions { def.repr() } /// Retrieve the function signature for the given generic arguments. pub fn fn_sig( &self, def_id: DefId, args_ref: GenericArgsRef<'tcx>, ) -> Binder<'tcx, FnSig<'tcx>> { let sig = self.tcx.fn_sig(def_id).instantiate(self.tcx, args_ref); sig } /// Retrieve the intrinsic definition if the item corresponds one. pub fn intrinsic(&self, def_id: DefId) -> Option { let intrinsic = self.tcx.intrinsic_raw(def_id); intrinsic } /// Retrieve the plain function name of an intrinsic. pub fn intrinsic_name(&self, def_id: DefId) -> String { self.tcx.intrinsic(def_id).unwrap().name.to_string() } /// Retrieve the closure signature for the given generic arguments. pub fn closure_sig(&self, args_ref: GenericArgsRef<'tcx>) -> Binder<'tcx, FnSig<'tcx>> { args_ref.as_closure().sig() } /// The number of variants in this ADT. pub fn adt_variants_len(&self, def: AdtDef<'tcx>) -> usize { def.variants().len() } /// Discriminant for a given variant index of AdtDef. pub fn adt_discr_for_variant( &self, adt: AdtDef<'tcx>, variant: rustc_abi::VariantIdx, ) -> Discr<'tcx> { adt.discriminant_for_variant(self.tcx, variant) } /// Discriminant for a given variand index and args of a coroutine. pub fn coroutine_discr_for_variant( &self, coroutine: DefId, args: GenericArgsRef<'tcx>, variant: rustc_abi::VariantIdx, ) -> Discr<'tcx> { args.as_coroutine().discriminant_for_variant(coroutine, self.tcx, variant) } /// The name of a variant. pub fn variant_name(&self, def: &'tcx VariantDef) -> String { def.name.to_string() } /// Evaluate constant as a target usize. pub fn eval_target_usize(&self, cnst: MirConst<'tcx>) -> Result { use crate::context::SmirTypingEnv; cnst.try_eval_target_usize(self.tcx, self.fully_monomorphized()) .ok_or_else(|| B::Error::new(format!("Const `{cnst:?}` cannot be encoded as u64"))) } pub fn eval_target_usize_ty(&self, cnst: ty::Const<'tcx>) -> Result { cnst.try_to_target_usize(self.tcx) .ok_or_else(|| B::Error::new(format!("Const `{cnst:?}` cannot be encoded as u64"))) } pub fn try_new_const_zst(&self, ty_internal: Ty<'tcx>) -> Result, B::Error> { let size = self .tcx .layout_of(self.fully_monomorphized().as_query_input(ty_internal)) .map_err(|err| { B::Error::new(format!( "Cannot create a zero-sized constant for type `{ty_internal}`: {err}" )) })? .size; if size.bytes() != 0 { return Err(B::Error::new(format!( "Cannot create a zero-sized constant for type `{ty_internal}`: \ Type `{ty_internal}` has {} bytes", size.bytes() ))); } Ok(MirConst::Ty(ty_internal, self.const_zero_sized(ty_internal))) } pub fn const_zero_sized(&self, ty_internal: Ty<'tcx>) -> ty::Const<'tcx> { ty::Const::zero_sized(self.tcx, ty_internal) } /// Create a new constant that represents the given string value. pub fn new_const_str(&self, value: &str) -> MirConst<'tcx> { let ty = Ty::new_static_str(self.tcx); let bytes = value.as_bytes(); let valtree = ValTree::from_raw_bytes(self.tcx, bytes); let cv = ty::Value { ty, valtree }; let val = self.tcx.valtree_to_const_val(cv); MirConst::from_value(val, ty) } /// Create a new constant that represents the given boolean value. pub fn new_const_bool(&self, value: bool) -> MirConst<'tcx> { MirConst::from_bool(self.tcx, value) } pub fn try_new_const_uint( &self, value: u128, ty_internal: Ty<'tcx>, ) -> Result, B::Error> { let size = self .tcx .layout_of(self.fully_monomorphized().as_query_input(ty_internal)) .unwrap() .size; let scalar = ScalarInt::try_from_uint(value, size).ok_or_else(|| { B::Error::new(format!("Value overflow: cannot convert `{value}` to `{ty_internal}`.")) })?; Ok(self.mir_const_from_scalar(Scalar::Int(scalar), ty_internal)) } pub fn try_new_ty_const_uint( &self, value: u128, ty_internal: Ty<'tcx>, ) -> Result, B::Error> { let size = self .tcx .layout_of(self.fully_monomorphized().as_query_input(ty_internal)) .unwrap() .size; let scalar = ScalarInt::try_from_uint(value, size).ok_or_else(|| { B::Error::new(format!("Value overflow: cannot convert `{value}` to `{ty_internal}`.")) })?; Ok(self.ty_const_new_value(ValTree::from_scalar_int(self.tcx, scalar), ty_internal)) } pub fn ty_new_uint(&self, ty: UintTy) -> Ty<'tcx> { Ty::new_uint(self.tcx, ty) } pub fn mir_const_from_scalar(&self, s: Scalar, ty: Ty<'tcx>) -> MirConst<'tcx> { MirConst::from_scalar(self.tcx, s, ty) } pub fn ty_const_new_value(&self, valtree: ValTree<'tcx>, ty: Ty<'tcx>) -> ty::Const<'tcx> { ty::Const::new_value(self.tcx, valtree, ty) } pub fn ty_valtree_from_scalar_int(&self, i: ScalarInt) -> ValTree<'tcx> { ValTree::from_scalar_int(self.tcx, i) } /// Create a new type from the given kind. pub fn new_rigid_ty(&self, internal_kind: TyKind<'tcx>) -> Ty<'tcx> { self.tcx.mk_ty_from_kind(internal_kind) } /// Create a new box type, `Box`, for the given inner type `T`. pub fn new_box_ty(&self, ty: Ty<'tcx>) -> Ty<'tcx> { ty::Ty::new_box(self.tcx, ty) } /// Returns the type of given crate item. pub fn def_ty(&self, item: DefId) -> Ty<'tcx> { self.tcx.type_of(item).instantiate_identity() } /// Returns the type of given definition instantiated with the given arguments. pub fn def_ty_with_args(&self, item: DefId, args_ref: GenericArgsRef<'tcx>) -> Ty<'tcx> { let def_ty = self.tcx.type_of(item); self.tcx.instantiate_and_normalize_erasing_regions( args_ref, self.fully_monomorphized(), def_ty, ) } /// `Span` of an item. pub fn span_of_an_item(&self, def_id: DefId) -> Span { self.tcx.def_span(def_id) } pub fn ty_const_pretty(&self, ct: ty::Const<'tcx>) -> String { ct.to_string() } /// Obtain the representation of a type. pub fn ty_pretty(&self, ty: Ty<'tcx>) -> String { ty.to_string() } /// Obtain the kind of a type. pub fn ty_kind(&self, ty: Ty<'tcx>) -> &'tcx TyKind<'tcx> { ty.kind() } /// Get the discriminant Ty for this Ty if there's one. pub fn rigid_ty_discriminant_ty(&self, internal_kind: TyKind<'tcx>) -> Ty<'tcx> { let internal_ty = self.tcx.mk_ty_from_kind(internal_kind); internal_ty.discriminant_ty(self.tcx) } /// Get the body of an Instance which is already monomorphized. pub fn instance_body(&self, instance: ty::Instance<'tcx>) -> Option> { self.instance_has_body(instance).then(|| BodyBuilder::new(self.tcx, instance).build()) } /// Get the instance type with generic instantiations applied and lifetimes erased. pub fn instance_ty(&self, instance: ty::Instance<'tcx>) -> Ty<'tcx> { assert!(!instance.has_non_region_param(), "{instance:?} needs further instantiation"); instance.ty(self.tcx, self.fully_monomorphized()) } /// Get the instantiation types. pub fn instance_args(&self, instance: ty::Instance<'tcx>) -> GenericArgsRef<'tcx> { instance.args } /// Get an instance ABI. pub fn instance_abi( &self, instance: ty::Instance<'tcx>, ) -> Result<&FnAbi<'tcx, Ty<'tcx>>, B::Error> { Ok(self.fn_abi_of_instance(instance, List::empty())?) } /// Get the ABI of a function pointer. pub fn fn_ptr_abi(&self, sig: PolyFnSig<'tcx>) -> Result<&FnAbi<'tcx, Ty<'tcx>>, B::Error> { Ok(self.fn_abi_of_fn_ptr(sig, List::empty())?) } /// Get the instance. pub fn instance_def_id( &self, instances: ty::Instance<'tcx>, tables: &mut Tables<'_, B>, ) -> B::DefId { let def_id = instances.def_id(); tables.create_def_id(def_id) } /// Get the instance mangled name. pub fn instance_mangled_name(&self, instance: ty::Instance<'tcx>) -> String { self.tcx.symbol_name(instance).name.to_string() } /// Check if this is an empty DropGlue shim. pub fn is_empty_drop_shim(&self, instance: ty::Instance<'tcx>) -> bool { matches!(instance.def, ty::InstanceKind::DropGlue(_, None)) } /// Convert a non-generic crate item into an instance. /// This function will panic if the item is generic. pub fn mono_instance(&self, def_id: DefId) -> Instance<'tcx> { Instance::mono(self.tcx, def_id) } /// Item requires monomorphization. pub fn requires_monomorphization(&self, def_id: DefId) -> bool { let generics = self.tcx.generics_of(def_id); let result = generics.requires_monomorphization(self.tcx); result } /// Resolve an instance from the given function definition and generic arguments. pub fn resolve_instance( &self, def_id: DefId, args_ref: GenericArgsRef<'tcx>, ) -> Option> { match Instance::try_resolve(self.tcx, self.fully_monomorphized(), def_id, args_ref) { Ok(Some(instance)) => Some(instance), Ok(None) | Err(_) => None, } } /// Resolve an instance for drop_in_place for the given type. pub fn resolve_drop_in_place(&self, internal_ty: Ty<'tcx>) -> Instance<'tcx> { let instance = Instance::resolve_drop_in_place(self.tcx, internal_ty); instance } /// Resolve instance for a function pointer. pub fn resolve_for_fn_ptr( &self, def_id: DefId, args_ref: GenericArgsRef<'tcx>, ) -> Option> { Instance::resolve_for_fn_ptr(self.tcx, self.fully_monomorphized(), def_id, args_ref) } /// Resolve instance for a closure with the requested type. pub fn resolve_closure( &self, def_id: DefId, args_ref: GenericArgsRef<'tcx>, closure_kind: ClosureKind, ) -> Option> { Some(Instance::resolve_closure(self.tcx, def_id, args_ref, closure_kind)) } /// Try to evaluate an instance into a constant. pub fn eval_instance( &self, instance: ty::Instance<'tcx>, ) -> Result, ErrorHandled> { self.tcx.const_eval_instance( self.fully_monomorphized(), instance, self.tcx.def_span(instance.def_id()), ) } /// Evaluate a static's initializer. pub fn eval_static_initializer( &self, def_id: DefId, ) -> Result, ErrorHandled> { self.tcx.eval_static_initializer(def_id) } /// Retrieve global allocation for the given allocation ID. pub fn global_alloc(&self, alloc_id: AllocId) -> GlobalAlloc<'tcx> { self.tcx.global_alloc(alloc_id) } /// Retrieve the id for the virtual table. pub fn vtable_allocation( &self, ty: Ty<'tcx>, trait_ref: Option>>, ) -> AllocId { let alloc_id = self.tcx.vtable_allocation(( ty, trait_ref.map(|principal| self.tcx.instantiate_bound_regions_with_erased(principal)), )); alloc_id } /// Retrieve the instance name for diagnostic messages. /// /// This will return the specialized name, e.g., `Vec::new`. pub fn instance_name(&self, instance: ty::Instance<'tcx>, trimmed: bool) -> String { if trimmed { with_forced_trimmed_paths!( self.tcx.def_path_str_with_args(instance.def_id(), instance.args) ) } else { with_no_trimmed_paths!( self.tcx.def_path_str_with_args(instance.def_id(), instance.args) ) } } /// Get the layout of a type. pub fn ty_layout(&self, ty: Ty<'tcx>) -> Result, B::Error> { let layout = self.layout_of(ty)?.layout; Ok(layout) } /// Get the resulting type of binary operation. pub fn binop_ty(&self, bin_op: BinOp, rhs: Ty<'tcx>, lhs: Ty<'tcx>) -> Ty<'tcx> { bin_op.ty(self.tcx, rhs, lhs) } /// Get the resulting type of unary operation. pub fn unop_ty(&self, un_op: UnOp, arg: Ty<'tcx>) -> Ty<'tcx> { un_op.ty(self.tcx, arg) } /// Get all associated items of a definition. pub fn associated_items(&self, def_id: DefId) -> Vec { let assoc_items = if self.tcx.is_trait_alias(def_id) { Vec::new() } else { self.tcx .associated_item_def_ids(def_id) .iter() .map(|did| self.tcx.associated_item(*did)) .collect() }; assoc_items } }