use super::IntEncodedWithFixedSize; use crate::{Encodable, Encoder, leb128}; pub struct MemEncoder { pub data: Vec, } impl MemEncoder { pub fn new() -> MemEncoder { MemEncoder { data: vec![] } } #[inline] pub fn position(&self) -> usize { self.data.len() } pub fn finish(self) -> Vec { self.data } /// Write up to `N` bytes to this encoder. /// /// This function can be used to avoid the overhead of calling memcpy for writes that /// have runtime-variable length, but are small and have a small fixed upper bound. /// /// This can be used to do in-place encoding as is done for leb128 (without this function /// we would need to write to a temporary buffer then memcpy into the encoder), and it can /// also be used to implement the varint scheme we use for rmeta and dep graph encoding, /// where we only want to encode the first few bytes of an integer. Note that common /// architectures support fixed-size writes up to 8 bytes with one instruction, so while this /// does in some sense do wasted work, we come out ahead. #[inline] pub fn write_with(&mut self, visitor: impl FnOnce(&mut [u8; N]) -> usize) { self.data.reserve(N); let old_len = self.data.len(); // SAFETY: The above `reserve` ensures that there is enough // room to write the encoded value to the vector's internal buffer. // The memory is also initialized as 0. let buf = unsafe { let buf = self.data.as_mut_ptr().add(old_len) as *mut [u8; N]; *buf = [0; N]; &mut *buf }; let written = visitor(buf); if written > N { Self::panic_invalid_write::(written); } unsafe { self.data.set_len(old_len + written) }; } #[cold] #[inline(never)] fn panic_invalid_write(written: usize) { panic!("MemEncoder::write_with::<{N}> cannot be used to write {written} bytes"); } /// Helper for calls where [`MemEncoder::write_with`] always writes the whole array. #[inline] pub fn write_array(&mut self, buf: [u8; N]) { self.write_with(|dest| { *dest = buf; N }) } } macro_rules! write_leb128 { ($this_fn:ident, $int_ty:ty, $write_leb_fn:ident) => { #[inline] fn $this_fn(&mut self, v: $int_ty) { self.write_with(|buf| leb128::$write_leb_fn(buf, v)) } }; } impl Encoder for MemEncoder { write_leb128!(emit_usize, usize, write_usize_leb128); write_leb128!(emit_u128, u128, write_u128_leb128); write_leb128!(emit_u64, u64, write_u64_leb128); write_leb128!(emit_u32, u32, write_u32_leb128); #[inline] fn emit_u16(&mut self, v: u16) { self.write_array(v.to_le_bytes()); } #[inline] fn emit_u8(&mut self, v: u8) { self.write_array([v]); } write_leb128!(emit_isize, isize, write_isize_leb128); write_leb128!(emit_i128, i128, write_i128_leb128); write_leb128!(emit_i64, i64, write_i64_leb128); write_leb128!(emit_i32, i32, write_i32_leb128); #[inline] fn emit_i16(&mut self, v: i16) { self.write_array(v.to_le_bytes()); } #[inline] fn emit_raw_bytes(&mut self, s: &[u8]) { self.data.extend_from_slice(s); } } // Specialize encoding byte slices. This specialization also applies to encoding `Vec`s, etc., // since the default implementations call `encode` on their slices internally. impl Encodable for [u8] { fn encode(&self, e: &mut MemEncoder) { Encoder::emit_usize(e, self.len()); e.emit_raw_bytes(self); } } impl Encodable for IntEncodedWithFixedSize { #[inline] fn encode(&self, e: &mut MemEncoder) { let start_pos = e.position(); e.write_array(self.0.to_le_bytes()); let end_pos = e.position(); debug_assert_eq!((end_pos - start_pos), IntEncodedWithFixedSize::ENCODED_SIZE); } }