use std::iter; use rustc_abi::{BackendRepr, HasDataLayout, Primitive, TyAbiInterface}; use crate::callconv::{ArgAbi, FnAbi, Reg, RegKind, Uniform}; use crate::spec::{HasTargetSpec, Target}; /// Indicates the variant of the AArch64 ABI we are compiling for. /// Used to accommodate Apple and Microsoft's deviations from the usual AAPCS ABI. /// /// Corresponds to Clang's `AArch64ABIInfo::ABIKind`. #[derive(Copy, Clone, PartialEq)] pub(crate) enum AbiKind { AAPCS, DarwinPCS, Win64, } fn is_homogeneous_aggregate<'a, Ty, C>(cx: &C, arg: &mut ArgAbi<'a, Ty>) -> Option where Ty: TyAbiInterface<'a, C> + Copy, C: HasDataLayout + HasTargetSpec, { arg.layout.homogeneous_aggregate(cx).ok().and_then(|ha| ha.unit()).and_then(|unit| { let size = arg.layout.size; // Ensure we have at most four uniquely addressable members. if size > unit.size.checked_mul(4, cx).unwrap() { return None; } let valid_unit = match unit.kind { RegKind::Integer => false, // The softfloat ABI treats floats like integers, so they // do not get homogeneous aggregate treatment. RegKind::Float => cx.target_spec().abi != "softfloat", RegKind::Vector => size.bits() == 64 || size.bits() == 128, }; valid_unit.then_some(Uniform::consecutive(unit, size)) }) } fn softfloat_float_abi(target: &Target, arg: &mut ArgAbi<'_, Ty>) { if target.abi != "softfloat" { return; } // Do *not* use the float registers for passing arguments, as that would make LLVM pick the ABI // and its choice depends on whether `neon` instructions are enabled. Instead, we follow the // AAPCS "softfloat" ABI, which specifies that floats should be passed as equivalently-sized // integers. Nominally this only exists for "R" profile chips, but sometimes people don't want // to use hardfloats even if the hardware supports them, so we do this for all softfloat // targets. if let BackendRepr::Scalar(s) = arg.layout.backend_repr && let Primitive::Float(f) = s.primitive() { arg.cast_to(Reg { kind: RegKind::Integer, size: f.size() }); } else if let BackendRepr::ScalarPair(s1, s2) = arg.layout.backend_repr && (matches!(s1.primitive(), Primitive::Float(_)) || matches!(s2.primitive(), Primitive::Float(_))) { // This case can only be reached for the Rust ABI, so we can do whatever we want here as // long as it does not depend on target features (i.e., as long as we do not use float // registers). So we pass small things in integer registers and large things via pointer // indirection. This means we lose the nice "pass it as two arguments" optimization, but we // currently just have to way to combine a `PassMode::Cast` with that optimization (and we // need a cast since we want to pass the float as an int). if arg.layout.size.bits() <= target.pointer_width.into() { arg.cast_to(Reg { kind: RegKind::Integer, size: arg.layout.size }); } else { arg.make_indirect(); } } } fn classify_ret<'a, Ty, C>(cx: &C, ret: &mut ArgAbi<'a, Ty>, kind: AbiKind) where Ty: TyAbiInterface<'a, C> + Copy, C: HasDataLayout + HasTargetSpec, { if !ret.layout.is_sized() { // Not touching this... return; } if !ret.layout.is_aggregate() { if kind == AbiKind::DarwinPCS { // On Darwin, when returning an i8/i16, it must be sign-extended to 32 bits, // and likewise a u8/u16 must be zero-extended to 32-bits. // See also: ret.extend_integer_width_to(32) } softfloat_float_abi(cx.target_spec(), ret); return; } if let Some(uniform) = is_homogeneous_aggregate(cx, ret) { ret.cast_to(uniform); return; } let size = ret.layout.size; let bits = size.bits(); if bits <= 128 { ret.cast_to(Uniform::new(Reg::i64(), size)); return; } ret.make_indirect(); } fn classify_arg<'a, Ty, C>(cx: &C, arg: &mut ArgAbi<'a, Ty>, kind: AbiKind) where Ty: TyAbiInterface<'a, C> + Copy, C: HasDataLayout + HasTargetSpec, { if !arg.layout.is_sized() { // Not touching this... return; } if !arg.layout.is_aggregate() { if kind == AbiKind::DarwinPCS { // On Darwin, when passing an i8/i16, it must be sign-extended to 32 bits, // and likewise a u8/u16 must be zero-extended to 32-bits. // See also: arg.extend_integer_width_to(32); } softfloat_float_abi(cx.target_spec(), arg); return; } if let Some(uniform) = is_homogeneous_aggregate(cx, arg) { arg.cast_to(uniform); return; } let size = arg.layout.size; let align = if kind == AbiKind::AAPCS { // When passing small aggregates by value, the AAPCS ABI mandates using the unadjusted // alignment of the type (not including `repr(align)`). // This matches behavior of `AArch64ABIInfo::classifyArgumentType` in Clang. // See: arg.layout.unadjusted_abi_align } else { arg.layout.align.abi }; if size.bits() <= 128 { if align.bits() == 128 { arg.cast_to(Uniform::new(Reg::i128(), size)); } else { arg.cast_to(Uniform::new(Reg::i64(), size)); } return; } arg.make_indirect(); } pub(crate) fn compute_abi_info<'a, Ty, C>(cx: &C, fn_abi: &mut FnAbi<'a, Ty>, kind: AbiKind) where Ty: TyAbiInterface<'a, C> + Copy, C: HasDataLayout + HasTargetSpec, { if !fn_abi.ret.is_ignore() { classify_ret(cx, &mut fn_abi.ret, kind); } for arg in fn_abi.args.iter_mut() { if arg.is_ignore() { continue; } classify_arg(cx, arg, kind); } } pub(crate) fn compute_rust_abi_info<'a, Ty, C>(cx: &C, fn_abi: &mut FnAbi<'a, Ty>) where Ty: TyAbiInterface<'a, C> + Copy, C: HasDataLayout + HasTargetSpec, { for arg in fn_abi.args.iter_mut().chain(iter::once(&mut fn_abi.ret)) { softfloat_float_abi(cx.target_spec(), arg); } }