use rustc_abi::{BackendRepr, Float, HasDataLayout, Integer, Primitive, TyAbiInterface}; use crate::callconv::{ArgAbi, FnAbi}; fn unwrap_trivial_aggregate<'a, Ty, C>(cx: &C, val: &mut ArgAbi<'a, Ty>) -> bool where Ty: TyAbiInterface<'a, C> + Copy, C: HasDataLayout, { if val.layout.is_aggregate() { if let Some(unit) = val.layout.homogeneous_aggregate(cx).ok().and_then(|ha| ha.unit()) { let size = val.layout.size; // This size check also catches over-aligned scalars as `size` will be rounded up to a // multiple of the alignment, and the default alignment of all scalar types on wasm // equals their size. if unit.size == size { val.cast_to(unit); return true; } } } false } fn classify_ret<'a, Ty, C>(cx: &C, ret: &mut ArgAbi<'a, Ty>) where Ty: TyAbiInterface<'a, C> + Copy, C: HasDataLayout, { ret.extend_integer_width_to(32); if ret.layout.is_aggregate() && !unwrap_trivial_aggregate(cx, ret) { ret.make_indirect(); } // `long double`, `__int128_t` and `__uint128_t` use an indirect return if let BackendRepr::Scalar(scalar) = ret.layout.backend_repr { match scalar.primitive() { Primitive::Int(Integer::I128, _) | Primitive::Float(Float::F128) => { ret.make_indirect(); } _ => {} } } } fn classify_arg<'a, Ty, C>(cx: &C, arg: &mut ArgAbi<'a, Ty>) where Ty: TyAbiInterface<'a, C> + Copy, C: HasDataLayout, { if !arg.layout.is_sized() { // Not touching this... return; } arg.extend_integer_width_to(32); if arg.layout.is_aggregate() && !unwrap_trivial_aggregate(cx, arg) { arg.make_indirect(); } } /// The purpose of this ABI is to match the C ABI (aka clang) exactly. pub(crate) fn compute_abi_info<'a, Ty, C>(cx: &C, fn_abi: &mut FnAbi<'a, Ty>) where Ty: TyAbiInterface<'a, C> + Copy, C: HasDataLayout, { if !fn_abi.ret.is_ignore() { classify_ret(cx, &mut fn_abi.ret); } for arg in fn_abi.args.iter_mut() { if arg.is_ignore() { continue; } classify_arg(cx, arg); } }