use std::fmt::Debug; use rustc_hir::def_id::DefId; use rustc_hir::lang_items::LangItem; pub use rustc_infer::infer::*; use rustc_macros::extension; use rustc_middle::arena::ArenaAllocatable; use rustc_middle::infer::canonical::{ Canonical, CanonicalQueryInput, CanonicalQueryResponse, QueryResponse, }; use rustc_middle::traits::query::NoSolution; use rustc_middle::ty::{self, GenericArg, Ty, TyCtxt, TypeFoldable, TypeVisitableExt, Upcast}; use rustc_span::DUMMY_SP; use tracing::instrument; use crate::infer::at::ToTrace; use crate::traits::query::evaluate_obligation::InferCtxtExt as _; use crate::traits::{self, Obligation, ObligationCause, ObligationCtxt}; #[extension(pub trait InferCtxtExt<'tcx>)] impl<'tcx> InferCtxt<'tcx> { fn can_eq>(&self, param_env: ty::ParamEnv<'tcx>, a: T, b: T) -> bool { self.probe(|_| { let ocx = ObligationCtxt::new(self); let Ok(()) = ocx.eq(&ObligationCause::dummy(), param_env, a, b) else { return false; }; ocx.select_where_possible().is_empty() }) } fn type_is_copy_modulo_regions(&self, param_env: ty::ParamEnv<'tcx>, ty: Ty<'tcx>) -> bool { let ty = self.resolve_vars_if_possible(ty); // FIXME(#132279): This should be removed as it causes us to incorrectly // handle opaques in their defining scope, and stalled coroutines. if !self.next_trait_solver() && !(param_env, ty).has_infer() && !ty.has_coroutines() { return self.tcx.type_is_copy_modulo_regions(self.typing_env(param_env), ty); } let copy_def_id = self.tcx.require_lang_item(LangItem::Copy, DUMMY_SP); // This can get called from typeck (by euv), and `moves_by_default` // rightly refuses to work with inference variables, but // moves_by_default has a cache, which we want to use in other // cases. traits::type_known_to_meet_bound_modulo_regions(self, param_env, ty, copy_def_id) } fn type_is_clone_modulo_regions(&self, param_env: ty::ParamEnv<'tcx>, ty: Ty<'tcx>) -> bool { let ty = self.resolve_vars_if_possible(ty); let clone_def_id = self.tcx.require_lang_item(LangItem::Clone, DUMMY_SP); traits::type_known_to_meet_bound_modulo_regions(self, param_env, ty, clone_def_id) } fn type_is_use_cloned_modulo_regions( &self, param_env: ty::ParamEnv<'tcx>, ty: Ty<'tcx>, ) -> bool { let ty = self.resolve_vars_if_possible(ty); let use_cloned_def_id = self.tcx.require_lang_item(LangItem::UseCloned, DUMMY_SP); traits::type_known_to_meet_bound_modulo_regions(self, param_env, ty, use_cloned_def_id) } fn type_is_sized_modulo_regions(&self, param_env: ty::ParamEnv<'tcx>, ty: Ty<'tcx>) -> bool { let lang_item = self.tcx.require_lang_item(LangItem::Sized, DUMMY_SP); traits::type_known_to_meet_bound_modulo_regions(self, param_env, ty, lang_item) } /// Check whether a `ty` implements given trait(trait_def_id) without side-effects. /// /// The inputs are: /// /// - the def-id of the trait /// - the type parameters of the trait, including the self-type /// - the parameter environment /// /// Invokes `evaluate_obligation`, so in the event that evaluating /// `Ty: Trait` causes overflow, EvaluatedToAmbigStackDependent will be returned. /// /// `type_implements_trait` is a convenience function for simple cases like /// /// ```ignore (illustrative) /// let copy_trait = infcx.tcx.require_lang_item(LangItem::Copy, span); /// let implements_copy = infcx.type_implements_trait(copy_trait, [ty], param_env) /// .must_apply_modulo_regions(); /// ``` /// /// In most cases you should instead create an [Obligation] and check whether /// it holds via [`evaluate_obligation`] or one of its helper functions like /// [`predicate_must_hold_modulo_regions`], because it properly handles higher ranked traits /// and it is more convenient and safer when your `params` are inside a [`Binder`]. /// /// [Obligation]: traits::Obligation /// [`evaluate_obligation`]: crate::traits::query::evaluate_obligation::InferCtxtExt::evaluate_obligation /// [`predicate_must_hold_modulo_regions`]: crate::traits::query::evaluate_obligation::InferCtxtExt::predicate_must_hold_modulo_regions /// [`Binder`]: ty::Binder #[instrument(level = "debug", skip(self, params), ret)] fn type_implements_trait( &self, trait_def_id: DefId, params: impl IntoIterator>>, param_env: ty::ParamEnv<'tcx>, ) -> traits::EvaluationResult { let trait_ref = ty::TraitRef::new(self.tcx, trait_def_id, params); let obligation = traits::Obligation { cause: traits::ObligationCause::dummy(), param_env, recursion_depth: 0, predicate: trait_ref.upcast(self.tcx), }; self.evaluate_obligation(&obligation).unwrap_or(traits::EvaluationResult::EvaluatedToErr) } /// Returns `Some` if a type implements a trait shallowly, without side-effects, /// along with any errors that would have been reported upon further obligation /// processing. /// /// - If this returns `Some([])`, then the trait holds modulo regions. /// - If this returns `Some([errors..])`, then the trait has an impl for /// the self type, but some nested obligations do not hold. /// - If this returns `None`, no implementation that applies could be found. fn type_implements_trait_shallow( &self, trait_def_id: DefId, ty: Ty<'tcx>, param_env: ty::ParamEnv<'tcx>, ) -> Option>> { self.probe(|_snapshot| { let ocx = ObligationCtxt::new_with_diagnostics(self); ocx.register_obligation(Obligation::new( self.tcx, ObligationCause::dummy(), param_env, ty::TraitRef::new(self.tcx, trait_def_id, [ty]), )); let errors = ocx.select_where_possible(); // Find the original predicate in the list of predicates that could definitely not be fulfilled. // If it is in that list, then we know this doesn't even shallowly implement the trait. // If it is not in that list, it was fulfilled, but there may be nested obligations, which we don't care about here. for error in &errors { let Some(trait_clause) = error.obligation.predicate.as_trait_clause() else { continue; }; let Some(bound_ty) = trait_clause.self_ty().no_bound_vars() else { continue }; if trait_clause.def_id() == trait_def_id && ocx.eq(&ObligationCause::dummy(), param_env, bound_ty, ty).is_ok() { return None; } } Some(errors) }) } } #[extension(pub trait InferCtxtBuilderExt<'tcx>)] impl<'tcx> InferCtxtBuilder<'tcx> { /// The "main method" for a canonicalized trait query. Given the /// canonical key `canonical_key`, this method will create a new /// inference context, instantiate the key, and run your operation /// `op`. The operation should yield up a result (of type `R`) as /// well as a set of trait obligations that must be fully /// satisfied. These obligations will be processed and the /// canonical result created. /// /// Returns `NoSolution` in the event of any error. /// /// (It might be mildly nicer to implement this on `TyCtxt`, and /// not `InferCtxtBuilder`, but that is a bit tricky right now. /// In part because we would need a `for<'tcx>` sort of /// bound for the closure and in part because it is convenient to /// have `'tcx` be free on this function so that we can talk about /// `K: TypeFoldable>`.) fn enter_canonical_trait_query( self, canonical_key: &CanonicalQueryInput<'tcx, K>, operation: impl FnOnce(&ObligationCtxt<'_, 'tcx>, K) -> Result, ) -> Result, NoSolution> where K: TypeFoldable>, R: Debug + TypeFoldable>, Canonical<'tcx, QueryResponse<'tcx, R>>: ArenaAllocatable<'tcx>, { let (infcx, key, var_values) = self.build_with_canonical(DUMMY_SP, canonical_key); let ocx = ObligationCtxt::new(&infcx); let value = operation(&ocx, key)?; ocx.make_canonicalized_query_response(var_values, value) } }