//! The new trait solver, currently still WIP. //! //! As a user of the trait system, you can use `TyCtxt::evaluate_goal` to //! interact with this solver. //! //! For a high-level overview of how this solver works, check out the relevant //! section of the rustc-dev-guide. //! //! FIXME(@lcnr): Write that section. If you read this before then ask me //! about it on zulip. // FIXME: Instead of using `infcx.canonicalize_query` we have to add a new routine which // preserves universes and creates a unique var (in the highest universe) for each // appearance of a region. // FIXME: `CanonicalVarValues` should be interned and `Copy`. // FIXME: uses of `infcx.at` need to enable deferred projection equality once that's implemented. use std::mem; use rustc_infer::infer::canonical::OriginalQueryValues; use rustc_infer::infer::{InferCtxt, TyCtxtInferExt}; use rustc_infer::traits::query::NoSolution; use rustc_infer::traits::Obligation; use rustc_middle::infer::canonical::{Canonical, CanonicalVarValues}; use rustc_middle::ty::{self, Ty, TyCtxt}; use rustc_middle::ty::{RegionOutlivesPredicate, ToPredicate, TypeOutlivesPredicate}; use rustc_span::DUMMY_SP; use self::infcx_ext::InferCtxtExt; mod assembly; mod cache; mod fulfill; mod infcx_ext; mod overflow; mod project_goals; mod trait_goals; pub use fulfill::FulfillmentCtxt; /// A goal is a statement, i.e. `predicate`, we want to prove /// given some assumptions, i.e. `param_env`. /// /// Most of the time the `param_env` contains the `where`-bounds of the function /// we're currently typechecking while the `predicate` is some trait bound. #[derive(Debug, PartialEq, Eq, Clone, Copy, Hash, TypeFoldable, TypeVisitable)] pub struct Goal<'tcx, P> { param_env: ty::ParamEnv<'tcx>, predicate: P, } impl<'tcx, P> Goal<'tcx, P> { pub fn new( tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>, predicate: impl ToPredicate<'tcx, P>, ) -> Goal<'tcx, P> { Goal { param_env, predicate: predicate.to_predicate(tcx) } } /// Updates the goal to one with a different `predicate` but the same `param_env`. fn with(self, tcx: TyCtxt<'tcx>, predicate: impl ToPredicate<'tcx, Q>) -> Goal<'tcx, Q> { Goal { param_env: self.param_env, predicate: predicate.to_predicate(tcx) } } } impl<'tcx, P> From> for Goal<'tcx, P> { fn from(obligation: Obligation<'tcx, P>) -> Goal<'tcx, P> { Goal { param_env: obligation.param_env, predicate: obligation.predicate } } } #[derive(Debug, PartialEq, Eq, Clone, Hash, TypeFoldable, TypeVisitable)] pub struct Response<'tcx> { pub var_values: CanonicalVarValues<'tcx>, /// Additional constraints returned by this query. pub external_constraints: ExternalConstraints<'tcx>, pub certainty: Certainty, } #[derive(Debug, PartialEq, Eq, Clone, Copy, Hash, TypeFoldable, TypeVisitable)] pub enum Certainty { Yes, Maybe(MaybeCause), } impl Certainty { /// When proving multiple goals using **AND**, e.g. nested obligations for an impl, /// use this function to unify the certainty of these goals pub fn unify_and(self, other: Certainty) -> Certainty { match (self, other) { (Certainty::Yes, Certainty::Yes) => Certainty::Yes, (Certainty::Yes, Certainty::Maybe(_)) => other, (Certainty::Maybe(_), Certainty::Yes) => self, (Certainty::Maybe(MaybeCause::Overflow), Certainty::Maybe(MaybeCause::Overflow)) => { Certainty::Maybe(MaybeCause::Overflow) } // If at least one of the goals is ambiguous, hide the overflow as the ambiguous goal // may still result in failure. (Certainty::Maybe(MaybeCause::Ambiguity), Certainty::Maybe(_)) | (Certainty::Maybe(_), Certainty::Maybe(MaybeCause::Ambiguity)) => { Certainty::Maybe(MaybeCause::Ambiguity) } } } } /// Why we failed to evaluate a goal. #[derive(Debug, PartialEq, Eq, Clone, Copy, Hash, TypeFoldable, TypeVisitable)] pub enum MaybeCause { /// We failed due to ambiguity. This ambiguity can either /// be a true ambiguity, i.e. there are multiple different answers, /// or we hit a case where we just don't bother, e.g. `?x: Trait` goals. Ambiguity, /// We gave up due to an overflow, most often by hitting the recursion limit. Overflow, } /// Additional constraints returned on success. #[derive(Debug, PartialEq, Eq, Clone, Hash, TypeFoldable, TypeVisitable)] pub struct ExternalConstraints<'tcx> { // FIXME: implement this. regions: (), opaque_types: Vec<(Ty<'tcx>, Ty<'tcx>)>, } type CanonicalGoal<'tcx, T = ty::Predicate<'tcx>> = Canonical<'tcx, Goal<'tcx, T>>; type CanonicalResponse<'tcx> = Canonical<'tcx, Response<'tcx>>; /// The result of evaluating a canonical query. /// /// FIXME: We use a different type than the existing canonical queries. This is because /// we need to add a `Certainty` for `overflow` and may want to restructure this code without /// having to worry about changes to currently used code. Once we've made progress on this /// solver, merge the two responses again. pub type QueryResult<'tcx> = Result, NoSolution>; pub trait TyCtxtExt<'tcx> { fn evaluate_goal(self, goal: CanonicalGoal<'tcx>) -> QueryResult<'tcx>; } impl<'tcx> TyCtxtExt<'tcx> for TyCtxt<'tcx> { fn evaluate_goal(self, goal: CanonicalGoal<'tcx>) -> QueryResult<'tcx> { let mut cx = EvalCtxt::new(self); cx.evaluate_canonical_goal(goal) } } struct EvalCtxt<'tcx> { tcx: TyCtxt<'tcx>, provisional_cache: cache::ProvisionalCache<'tcx>, overflow_data: overflow::OverflowData, } impl<'tcx> EvalCtxt<'tcx> { fn new(tcx: TyCtxt<'tcx>) -> EvalCtxt<'tcx> { EvalCtxt { tcx, provisional_cache: cache::ProvisionalCache::empty(), overflow_data: overflow::OverflowData::new(tcx), } } /// Recursively evaluates `goal`, returning whether any inference vars have /// been constrained and the certainty of the result. fn evaluate_goal( &mut self, infcx: &InferCtxt<'tcx>, goal: Goal<'tcx, ty::Predicate<'tcx>>, ) -> Result<(bool, Certainty), NoSolution> { let mut orig_values = OriginalQueryValues::default(); let canonical_goal = infcx.canonicalize_query(goal, &mut orig_values); let canonical_response = self.evaluate_canonical_goal(canonical_goal)?; Ok(( true, // FIXME: check whether `var_values` are an identity substitution. fixme_instantiate_canonical_query_response(infcx, &orig_values, canonical_response), )) } fn evaluate_canonical_goal(&mut self, goal: CanonicalGoal<'tcx>) -> QueryResult<'tcx> { match self.try_push_stack(goal) { Ok(()) => {} // Our goal is already on the stack, eager return. Err(response) => return response, } // We may have to repeatedly recompute the goal in case of coinductive cycles, // check out the `cache` module for more information. // // FIXME: Similar to `evaluate_all`, this has to check for overflow. loop { let result = self.compute_goal(goal); // FIXME: `Response` should be `Copy` if self.try_finalize_goal(goal, result.clone()) { return result; } } } fn compute_goal(&mut self, canonical_goal: CanonicalGoal<'tcx>) -> QueryResult<'tcx> { // WARNING: We're looking at a canonical value without instantiating it here. // // We have to be incredibly careful to not change the order of bound variables or // remove any. As we go from `Goal<'tcx, Predicate>` to `Goal` with the variants // of `PredicateKind` this is the case and it is and faster than instantiating and // recanonicalizing. let Goal { param_env, predicate } = canonical_goal.value; if let Some(kind) = predicate.kind().no_bound_vars() { match kind { ty::PredicateKind::Clause(ty::Clause::Trait(predicate)) => self.compute_trait_goal( canonical_goal.unchecked_rebind(Goal { param_env, predicate }), ), ty::PredicateKind::Clause(ty::Clause::Projection(predicate)) => self .compute_projection_goal( canonical_goal.unchecked_rebind(Goal { param_env, predicate }), ), ty::PredicateKind::Clause(ty::Clause::TypeOutlives(predicate)) => self .compute_type_outlives_goal( canonical_goal.unchecked_rebind(Goal { param_env, predicate }), ), ty::PredicateKind::Clause(ty::Clause::RegionOutlives(predicate)) => self .compute_region_outlives_goal( canonical_goal.unchecked_rebind(Goal { param_env, predicate }), ), // FIXME: implement these predicates :) ty::PredicateKind::WellFormed(_) | ty::PredicateKind::ObjectSafe(_) | ty::PredicateKind::ClosureKind(_, _, _) | ty::PredicateKind::Subtype(_) | ty::PredicateKind::Coerce(_) | ty::PredicateKind::ConstEvaluatable(_) | ty::PredicateKind::ConstEquate(_, _) | ty::PredicateKind::TypeWellFormedFromEnv(_) | ty::PredicateKind::Ambiguous => unimplemented!(), } } else { let (infcx, goal, var_values) = self.tcx.infer_ctxt().build_with_canonical(DUMMY_SP, &canonical_goal); let kind = infcx.replace_bound_vars_with_placeholders(goal.predicate.kind()); let goal = goal.with(self.tcx, ty::Binder::dummy(kind)); let (_, certainty) = self.evaluate_goal(&infcx, goal)?; infcx.make_canonical_response(var_values, certainty) } } fn compute_type_outlives_goal( &mut self, _goal: CanonicalGoal<'tcx, TypeOutlivesPredicate<'tcx>>, ) -> QueryResult<'tcx> { todo!() } fn compute_region_outlives_goal( &mut self, _goal: CanonicalGoal<'tcx, RegionOutlivesPredicate<'tcx>>, ) -> QueryResult<'tcx> { todo!() } } impl<'tcx> EvalCtxt<'tcx> { fn evaluate_all( &mut self, infcx: &InferCtxt<'tcx>, mut goals: Vec>>, ) -> Result { let mut new_goals = Vec::new(); self.repeat_while_none(|this| { let mut has_changed = Err(Certainty::Yes); for goal in goals.drain(..) { let (changed, certainty) = match this.evaluate_goal(infcx, goal) { Ok(result) => result, Err(NoSolution) => return Some(Err(NoSolution)), }; if changed { has_changed = Ok(()); } match certainty { Certainty::Yes => {} Certainty::Maybe(_) => { new_goals.push(goal); has_changed = has_changed.map_err(|c| c.unify_and(certainty)); } } } match has_changed { Ok(()) => { mem::swap(&mut new_goals, &mut goals); None } Err(certainty) => Some(Ok(certainty)), } }) } } fn fixme_instantiate_canonical_query_response<'tcx>( _: &InferCtxt<'tcx>, _: &OriginalQueryValues<'tcx>, _: CanonicalResponse<'tcx>, ) -> Certainty { unimplemented!() }