//! Checking that constant values used in types can be successfully evaluated. //! //! For concrete constants, this is fairly simple as we can just try and evaluate it. //! //! When dealing with polymorphic constants, for example `std::mem::size_of::() - 1`, //! this is not as easy. //! //! In this case we try to build an abstract representation of this constant using //! `thir_abstract_const` which can then be checked for structural equality with other //! generic constants mentioned in the `caller_bounds` of the current environment. use rustc_errors::ErrorReported; use rustc_hir::def::DefKind; use rustc_index::vec::IndexVec; use rustc_infer::infer::InferCtxt; use rustc_middle::mir; use rustc_middle::mir::interpret::ErrorHandled; use rustc_middle::thir; use rustc_middle::thir::abstract_const::{self, Node, NodeId, NotConstEvaluatable}; use rustc_middle::ty::subst::{Subst, SubstsRef}; use rustc_middle::ty::{self, TyCtxt, TypeFoldable}; use rustc_session::lint; use rustc_span::def_id::LocalDefId; use rustc_span::Span; use std::cmp; use std::iter; use std::ops::ControlFlow; /// Check if a given constant can be evaluated. pub fn is_const_evaluatable<'cx, 'tcx>( infcx: &InferCtxt<'cx, 'tcx>, uv: ty::Unevaluated<'tcx, ()>, param_env: ty::ParamEnv<'tcx>, span: Span, ) -> Result<(), NotConstEvaluatable> { debug!("is_const_evaluatable({:?})", uv); if infcx.tcx.features().generic_const_exprs { let tcx = infcx.tcx; match AbstractConst::new(tcx, uv)? { // We are looking at a generic abstract constant. Some(ct) => { for pred in param_env.caller_bounds() { match pred.kind().skip_binder() { ty::PredicateKind::ConstEvaluatable(uv) => { if let Some(b_ct) = AbstractConst::new(tcx, uv)? { // Try to unify with each subtree in the AbstractConst to allow for // `N + 1` being const evaluatable even if theres only a `ConstEvaluatable` // predicate for `(N + 1) * 2` let result = walk_abstract_const(tcx, b_ct, |b_ct| { match try_unify(tcx, ct, b_ct) { true => ControlFlow::BREAK, false => ControlFlow::CONTINUE, } }); if let ControlFlow::Break(()) = result { debug!("is_const_evaluatable: abstract_const ~~> ok"); return Ok(()); } } } _ => {} // don't care } } // We were unable to unify the abstract constant with // a constant found in the caller bounds, there are // now three possible cases here. #[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord)] enum FailureKind { /// The abstract const still references an inference /// variable, in this case we return `TooGeneric`. MentionsInfer, /// The abstract const references a generic parameter, /// this means that we emit an error here. MentionsParam, /// The substs are concrete enough that we can simply /// try and evaluate the given constant. Concrete, } let mut failure_kind = FailureKind::Concrete; walk_abstract_const::(tcx, ct, |node| match node.root(tcx) { Node::Leaf(leaf) => { if leaf.has_infer_types_or_consts() { failure_kind = FailureKind::MentionsInfer; } else if leaf.has_param_types_or_consts() { failure_kind = cmp::min(failure_kind, FailureKind::MentionsParam); } ControlFlow::CONTINUE } Node::Cast(_, _, ty) => { if ty.has_infer_types_or_consts() { failure_kind = FailureKind::MentionsInfer; } else if ty.has_param_types_or_consts() { failure_kind = cmp::min(failure_kind, FailureKind::MentionsParam); } ControlFlow::CONTINUE } Node::Binop(_, _, _) | Node::UnaryOp(_, _) | Node::FunctionCall(_, _) => { ControlFlow::CONTINUE } }); match failure_kind { FailureKind::MentionsInfer => { return Err(NotConstEvaluatable::MentionsInfer); } FailureKind::MentionsParam => { return Err(NotConstEvaluatable::MentionsParam); } FailureKind::Concrete => { // Dealt with below by the same code which handles this // without the feature gate. } } } None => { // If we are dealing with a concrete constant, we can // reuse the old code path and try to evaluate // the constant. } } } let future_compat_lint = || { if let Some(local_def_id) = uv.def.did.as_local() { infcx.tcx.struct_span_lint_hir( lint::builtin::CONST_EVALUATABLE_UNCHECKED, infcx.tcx.hir().local_def_id_to_hir_id(local_def_id), span, |err| { err.build("cannot use constants which depend on generic parameters in types") .emit(); }, ); } }; // FIXME: We should only try to evaluate a given constant here if it is fully concrete // as we don't want to allow things like `[u8; std::mem::size_of::<*mut T>()]`. // // We previously did not check this, so we only emit a future compat warning if // const evaluation succeeds and the given constant is still polymorphic for now // and hopefully soon change this to an error. // // See #74595 for more details about this. let concrete = infcx.const_eval_resolve(param_env, uv.expand(), Some(span)); if concrete.is_ok() && uv.substs.has_param_types_or_consts() { match infcx.tcx.def_kind(uv.def.did) { DefKind::AnonConst | DefKind::InlineConst => { let mir_body = infcx.tcx.mir_for_ctfe_opt_const_arg(uv.def); if mir_body.is_polymorphic { future_compat_lint(); } } _ => future_compat_lint(), } } debug!(?concrete, "is_const_evaluatable"); match concrete { Err(ErrorHandled::TooGeneric) => Err(match uv.has_infer_types_or_consts() { true => NotConstEvaluatable::MentionsInfer, false => NotConstEvaluatable::MentionsParam, }), Err(ErrorHandled::Linted) => { infcx.tcx.sess.delay_span_bug(span, "constant in type had error reported as lint"); Err(NotConstEvaluatable::Error(ErrorReported)) } Err(ErrorHandled::Reported(e)) => Err(NotConstEvaluatable::Error(e)), Ok(_) => Ok(()), } } /// A tree representing an anonymous constant. /// /// This is only able to represent a subset of `MIR`, /// and should not leak any information about desugarings. #[derive(Debug, Clone, Copy)] pub struct AbstractConst<'tcx> { // FIXME: Consider adding something like `IndexSlice` // and use this here. inner: &'tcx [Node<'tcx>], substs: SubstsRef<'tcx>, } impl<'tcx> AbstractConst<'tcx> { pub fn new( tcx: TyCtxt<'tcx>, uv: ty::Unevaluated<'tcx, ()>, ) -> Result>, ErrorReported> { let inner = tcx.thir_abstract_const_opt_const_arg(uv.def)?; debug!("AbstractConst::new({:?}) = {:?}", uv, inner); Ok(inner.map(|inner| AbstractConst { inner, substs: uv.substs })) } pub fn from_const( tcx: TyCtxt<'tcx>, ct: &ty::Const<'tcx>, ) -> Result>, ErrorReported> { match ct.val { ty::ConstKind::Unevaluated(uv) => AbstractConst::new(tcx, uv.shrink()), ty::ConstKind::Error(_) => Err(ErrorReported), _ => Ok(None), } } #[inline] pub fn subtree(self, node: NodeId) -> AbstractConst<'tcx> { AbstractConst { inner: &self.inner[..=node.index()], substs: self.substs } } #[inline] pub fn root(self, tcx: TyCtxt<'tcx>) -> Node<'tcx> { let node = self.inner.last().copied().unwrap(); match node { Node::Leaf(leaf) => Node::Leaf(leaf.subst(tcx, self.substs)), Node::Cast(kind, operand, ty) => Node::Cast(kind, operand, ty.subst(tcx, self.substs)), // Don't perform substitution on the following as they can't directly contain generic params Node::Binop(_, _, _) | Node::UnaryOp(_, _) | Node::FunctionCall(_, _) => node, } } } struct AbstractConstBuilder<'a, 'tcx> { tcx: TyCtxt<'tcx>, body_id: thir::ExprId, body: &'a thir::Thir<'tcx>, /// The current WIP node tree. nodes: IndexVec>, } impl<'a, 'tcx> AbstractConstBuilder<'a, 'tcx> { fn root_span(&self) -> Span { self.body.exprs[self.body_id].span } fn error(&mut self, span: Span, msg: &str) -> Result { self.tcx .sess .struct_span_err(self.root_span(), "overly complex generic constant") .span_label(span, msg) .help("consider moving this anonymous constant into a `const` function") .emit(); Err(ErrorReported) } fn maybe_supported_error(&mut self, span: Span, msg: &str) -> Result { self.tcx .sess .struct_span_err(self.root_span(), "overly complex generic constant") .span_label(span, msg) .help("consider moving this anonymous constant into a `const` function") .note("this operation may be supported in the future") .emit(); Err(ErrorReported) } fn new( tcx: TyCtxt<'tcx>, (body, body_id): (&'a thir::Thir<'tcx>, thir::ExprId), ) -> Result>, ErrorReported> { let builder = AbstractConstBuilder { tcx, body_id, body, nodes: IndexVec::new() }; struct IsThirPolymorphic<'a, 'tcx> { is_poly: bool, thir: &'a thir::Thir<'tcx>, } use thir::visit; impl<'a, 'tcx: 'a> visit::Visitor<'a, 'tcx> for IsThirPolymorphic<'a, 'tcx> { fn thir(&self) -> &'a thir::Thir<'tcx> { &self.thir } fn visit_expr(&mut self, expr: &thir::Expr<'tcx>) { self.is_poly |= expr.ty.has_param_types_or_consts(); if !self.is_poly { visit::walk_expr(self, expr) } } fn visit_pat(&mut self, pat: &thir::Pat<'tcx>) { self.is_poly |= pat.ty.has_param_types_or_consts(); if !self.is_poly { visit::walk_pat(self, pat); } } fn visit_const(&mut self, ct: &'tcx ty::Const<'tcx>) { self.is_poly |= ct.has_param_types_or_consts(); } } let mut is_poly_vis = IsThirPolymorphic { is_poly: false, thir: body }; visit::walk_expr(&mut is_poly_vis, &body[body_id]); debug!("AbstractConstBuilder: is_poly={}", is_poly_vis.is_poly); if !is_poly_vis.is_poly { return Ok(None); } Ok(Some(builder)) } /// We do not allow all binary operations in abstract consts, so filter disallowed ones. fn check_binop(op: mir::BinOp) -> bool { use mir::BinOp::*; match op { Add | Sub | Mul | Div | Rem | BitXor | BitAnd | BitOr | Shl | Shr | Eq | Lt | Le | Ne | Ge | Gt => true, Offset => false, } } /// While we currently allow all unary operations, we still want to explicitly guard against /// future changes here. fn check_unop(op: mir::UnOp) -> bool { use mir::UnOp::*; match op { Not | Neg => true, } } /// Builds the abstract const by walking the thir and bailing out when /// encountering an unspported operation. fn build(mut self) -> Result<&'tcx [Node<'tcx>], ErrorReported> { debug!("Abstractconstbuilder::build: body={:?}", &*self.body); self.recurse_build(self.body_id)?; for n in self.nodes.iter() { if let Node::Leaf(ty::Const { val: ty::ConstKind::Unevaluated(ct), ty: _ }) = n { // `AbstractConst`s should not contain any promoteds as they require references which // are not allowed. assert_eq!(ct.promoted, None); } } Ok(self.tcx.arena.alloc_from_iter(self.nodes.into_iter())) } fn recurse_build(&mut self, node: thir::ExprId) -> Result { use thir::ExprKind; let node = &self.body.exprs[node]; debug!("recurse_build: node={:?}", node); Ok(match &node.kind { // I dont know if handling of these 3 is correct &ExprKind::Scope { value, .. } => self.recurse_build(value)?, &ExprKind::PlaceTypeAscription { source, .. } | &ExprKind::ValueTypeAscription { source, .. } => self.recurse_build(source)?, // subtle: associated consts are literals this arm handles // `::ASSOC` as well as `12` &ExprKind::Literal { literal, .. } => self.nodes.push(Node::Leaf(literal)), ExprKind::Call { fun, args, .. } => { let fun = self.recurse_build(*fun)?; let mut new_args = Vec::::with_capacity(args.len()); for &id in args.iter() { new_args.push(self.recurse_build(id)?); } let new_args = self.tcx.arena.alloc_slice(&new_args); self.nodes.push(Node::FunctionCall(fun, new_args)) } &ExprKind::Binary { op, lhs, rhs } if Self::check_binop(op) => { let lhs = self.recurse_build(lhs)?; let rhs = self.recurse_build(rhs)?; self.nodes.push(Node::Binop(op, lhs, rhs)) } &ExprKind::Unary { op, arg } if Self::check_unop(op) => { let arg = self.recurse_build(arg)?; self.nodes.push(Node::UnaryOp(op, arg)) } // This is necessary so that the following compiles: // // ``` // fn foo(a: [(); N + 1]) { // bar::<{ N + 1 }>(); // } // ``` ExprKind::Block { body: thir::Block { stmts: box [], expr: Some(e), .. } } => { self.recurse_build(*e)? } // `ExprKind::Use` happens when a `hir::ExprKind::Cast` is a // "coercion cast" i.e. using a coercion or is a no-op. // This is important so that `N as usize as usize` doesnt unify with `N as usize`. (untested) &ExprKind::Use { source } => { let arg = self.recurse_build(source)?; self.nodes.push(Node::Cast(abstract_const::CastKind::Use, arg, node.ty)) } &ExprKind::Cast { source } => { let arg = self.recurse_build(source)?; self.nodes.push(Node::Cast(abstract_const::CastKind::As, arg, node.ty)) } ExprKind::Borrow{ arg, ..} => { let arg_node = &self.body.exprs[*arg]; // Skip reborrows for now until we allow Deref/Borrow/AddressOf // expressions. // FIXME(generic_const_exprs): Verify/explain why this is sound if let ExprKind::Deref {arg} = arg_node.kind { self.recurse_build(arg)? } else { self.maybe_supported_error( node.span, "borrowing is not supported in generic constants", )? } } // FIXME(generic_const_exprs): We may want to support these. ExprKind::AddressOf { .. } | ExprKind::Deref {..}=> self.maybe_supported_error( node.span, "dereferencing or taking the address is not supported in generic constants", )?, ExprKind::Repeat { .. } | ExprKind::Array { .. } => self.maybe_supported_error( node.span, "array construction is not supported in generic constants", )?, ExprKind::Block { .. } => self.maybe_supported_error( node.span, "blocks are not supported in generic constant", )?, ExprKind::NeverToAny { .. } => self.maybe_supported_error( node.span, "converting nevers to any is not supported in generic constant", )?, ExprKind::Tuple { .. } => self.maybe_supported_error( node.span, "tuple construction is not supported in generic constants", )?, ExprKind::Index { .. } => self.maybe_supported_error( node.span, "indexing is not supported in generic constant", )?, ExprKind::Field { .. } => self.maybe_supported_error( node.span, "field access is not supported in generic constant", )?, ExprKind::ConstBlock { .. } => self.maybe_supported_error( node.span, "const blocks are not supported in generic constant", )?, ExprKind::Adt(_) => self.maybe_supported_error( node.span, "struct/enum construction is not supported in generic constants", )?, // dont know if this is correct ExprKind::Pointer { .. } => self.error(node.span, "pointer casts are not allowed in generic constants")?, ExprKind::Yield { .. } => self.error(node.span, "generator control flow is not allowed in generic constants")?, ExprKind::Continue { .. } | ExprKind::Break { .. } | ExprKind::Loop { .. } => self .error( node.span, "loops and loop control flow are not supported in generic constants", )?, ExprKind::Box { .. } => self.error(node.span, "allocations are not allowed in generic constants")?, ExprKind::Unary { .. } => unreachable!(), // we handle valid unary/binary ops above ExprKind::Binary { .. } => self.error(node.span, "unsupported binary operation in generic constants")?, ExprKind::LogicalOp { .. } => self.error(node.span, "unsupported operation in generic constants, short-circuiting operations would imply control flow")?, ExprKind::Assign { .. } | ExprKind::AssignOp { .. } => { self.error(node.span, "assignment is not supported in generic constants")? } ExprKind::Closure { .. } | ExprKind::Return { .. } => self.error( node.span, "closures and function keywords are not supported in generic constants", )?, // let expressions imply control flow ExprKind::Match { .. } | ExprKind::If { .. } | ExprKind::Let { .. } => self.error(node.span, "control flow is not supported in generic constants")?, ExprKind::InlineAsm { .. } => { self.error(node.span, "assembly is not supported in generic constants")? } // we dont permit let stmts so `VarRef` and `UpvarRef` cant happen ExprKind::VarRef { .. } | ExprKind::UpvarRef { .. } | ExprKind::StaticRef { .. } | ExprKind::ThreadLocalRef(_) => { self.error(node.span, "unsupported operation in generic constant")? } }) } } /// Builds an abstract const, do not use this directly, but use `AbstractConst::new` instead. pub(super) fn thir_abstract_const<'tcx>( tcx: TyCtxt<'tcx>, def: ty::WithOptConstParam, ) -> Result]>, ErrorReported> { if tcx.features().generic_const_exprs { match tcx.def_kind(def.did) { // FIXME(generic_const_exprs): We currently only do this for anonymous constants, // meaning that we do not look into associated constants. I(@lcnr) am not yet sure whether // we want to look into them or treat them as opaque projections. // // Right now we do neither of that and simply always fail to unify them. DefKind::AnonConst | DefKind::InlineConst => (), _ => return Ok(None), } let body = tcx.thir_body(def); if body.0.borrow().exprs.is_empty() { // type error in constant, there is no thir return Err(ErrorReported); } AbstractConstBuilder::new(tcx, (&*body.0.borrow(), body.1))? .map(AbstractConstBuilder::build) .transpose() } else { Ok(None) } } pub(super) fn try_unify_abstract_consts<'tcx>( tcx: TyCtxt<'tcx>, (a, b): (ty::Unevaluated<'tcx, ()>, ty::Unevaluated<'tcx, ()>), ) -> bool { (|| { if let Some(a) = AbstractConst::new(tcx, a)? { if let Some(b) = AbstractConst::new(tcx, b)? { return Ok(try_unify(tcx, a, b)); } } Ok(false) })() .unwrap_or_else(|ErrorReported| true) // FIXME(generic_const_exprs): We should instead have this // method return the resulting `ty::Const` and return `ConstKind::Error` // on `ErrorReported`. } pub fn walk_abstract_const<'tcx, R, F>( tcx: TyCtxt<'tcx>, ct: AbstractConst<'tcx>, mut f: F, ) -> ControlFlow where F: FnMut(AbstractConst<'tcx>) -> ControlFlow, { fn recurse<'tcx, R>( tcx: TyCtxt<'tcx>, ct: AbstractConst<'tcx>, f: &mut dyn FnMut(AbstractConst<'tcx>) -> ControlFlow, ) -> ControlFlow { f(ct)?; let root = ct.root(tcx); match root { Node::Leaf(_) => ControlFlow::CONTINUE, Node::Binop(_, l, r) => { recurse(tcx, ct.subtree(l), f)?; recurse(tcx, ct.subtree(r), f) } Node::UnaryOp(_, v) => recurse(tcx, ct.subtree(v), f), Node::FunctionCall(func, args) => { recurse(tcx, ct.subtree(func), f)?; args.iter().try_for_each(|&arg| recurse(tcx, ct.subtree(arg), f)) } Node::Cast(_, operand, _) => recurse(tcx, ct.subtree(operand), f), } } recurse(tcx, ct, &mut f) } /// Tries to unify two abstract constants using structural equality. pub(super) fn try_unify<'tcx>( tcx: TyCtxt<'tcx>, mut a: AbstractConst<'tcx>, mut b: AbstractConst<'tcx>, ) -> bool { // We substitute generics repeatedly to allow AbstractConsts to unify where a // ConstKind::Unevalated could be turned into an AbstractConst that would unify e.g. // Param(N) should unify with Param(T), substs: [Unevaluated("T2", [Unevaluated("T3", [Param(N)])])] while let Node::Leaf(a_ct) = a.root(tcx) { match AbstractConst::from_const(tcx, a_ct) { Ok(Some(a_act)) => a = a_act, Ok(None) => break, Err(_) => return true, } } while let Node::Leaf(b_ct) = b.root(tcx) { match AbstractConst::from_const(tcx, b_ct) { Ok(Some(b_act)) => b = b_act, Ok(None) => break, Err(_) => return true, } } match (a.root(tcx), b.root(tcx)) { (Node::Leaf(a_ct), Node::Leaf(b_ct)) => { if a_ct.ty != b_ct.ty { return false; } match (a_ct.val, b_ct.val) { // We can just unify errors with everything to reduce the amount of // emitted errors here. (ty::ConstKind::Error(_), _) | (_, ty::ConstKind::Error(_)) => true, (ty::ConstKind::Param(a_param), ty::ConstKind::Param(b_param)) => { a_param == b_param } (ty::ConstKind::Value(a_val), ty::ConstKind::Value(b_val)) => a_val == b_val, // If we have `fn a() -> [u8; N + 1]` and `fn b() -> [u8; 1 + M]` // we do not want to use `assert_eq!(a(), b())` to infer that `N` and `M` have to be `1`. This // means that we only allow inference variables if they are equal. (ty::ConstKind::Infer(a_val), ty::ConstKind::Infer(b_val)) => a_val == b_val, // We expand generic anonymous constants at the start of this function, so this // branch should only be taking when dealing with associated constants, at // which point directly comparing them seems like the desired behavior. // // FIXME(generic_const_exprs): This isn't actually the case. // We also take this branch for concrete anonymous constants and // expand generic anonymous constants with concrete substs. (ty::ConstKind::Unevaluated(a_uv), ty::ConstKind::Unevaluated(b_uv)) => { a_uv == b_uv } // FIXME(generic_const_exprs): We may want to either actually try // to evaluate `a_ct` and `b_ct` if they are are fully concrete or something like // this, for now we just return false here. _ => false, } } (Node::Binop(a_op, al, ar), Node::Binop(b_op, bl, br)) if a_op == b_op => { try_unify(tcx, a.subtree(al), b.subtree(bl)) && try_unify(tcx, a.subtree(ar), b.subtree(br)) } (Node::UnaryOp(a_op, av), Node::UnaryOp(b_op, bv)) if a_op == b_op => { try_unify(tcx, a.subtree(av), b.subtree(bv)) } (Node::FunctionCall(a_f, a_args), Node::FunctionCall(b_f, b_args)) if a_args.len() == b_args.len() => { try_unify(tcx, a.subtree(a_f), b.subtree(b_f)) && iter::zip(a_args, b_args) .all(|(&an, &bn)| try_unify(tcx, a.subtree(an), b.subtree(bn))) } (Node::Cast(a_kind, a_operand, a_ty), Node::Cast(b_kind, b_operand, b_ty)) if (a_ty == b_ty) && (a_kind == b_kind) => { try_unify(tcx, a.subtree(a_operand), b.subtree(b_operand)) } // use this over `_ => false` to make adding variants to `Node` less error prone (Node::Cast(..), _) | (Node::FunctionCall(..), _) | (Node::UnaryOp(..), _) | (Node::Binop(..), _) | (Node::Leaf(..), _) => false, } }