//! Trait Resolution. See the [rustc dev guide] for more information on how this works. //! //! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/traits/resolution.html pub mod auto_trait; pub(crate) mod coherence; pub mod const_evaluatable; mod dyn_compatibility; pub mod effects; mod engine; mod fulfill; pub mod misc; pub mod normalize; pub mod outlives_bounds; pub mod project; pub mod query; #[allow(hidden_glob_reexports)] mod select; mod specialize; mod structural_normalize; #[allow(hidden_glob_reexports)] mod util; pub mod vtable; pub mod wf; use std::fmt::Debug; use std::ops::ControlFlow; use rustc_errors::ErrorGuaranteed; use rustc_hir::def::DefKind; pub use rustc_infer::traits::*; use rustc_middle::query::Providers; use rustc_middle::span_bug; use rustc_middle::ty::error::{ExpectedFound, TypeError}; use rustc_middle::ty::fold::TypeFoldable; use rustc_middle::ty::visit::{TypeVisitable, TypeVisitableExt}; use rustc_middle::ty::{ self, GenericArgs, GenericArgsRef, Ty, TyCtxt, TypeFolder, TypeSuperFoldable, TypeSuperVisitable, TypingMode, Upcast, }; use rustc_span::def_id::DefId; use rustc_span::{DUMMY_SP, Span}; use tracing::{debug, instrument}; pub use self::coherence::{ InCrate, IsFirstInputType, OrphanCheckErr, OrphanCheckMode, OverlapResult, UncoveredTyParams, add_placeholder_note, orphan_check_trait_ref, overlapping_impls, }; pub use self::dyn_compatibility::{ DynCompatibilityViolation, dyn_compatibility_violations_for_assoc_item, hir_ty_lowering_dyn_compatibility_violations, is_vtable_safe_method, }; pub use self::engine::{ObligationCtxt, TraitEngineExt}; pub use self::fulfill::{FulfillmentContext, OldSolverError, PendingPredicateObligation}; pub use self::normalize::NormalizeExt; pub use self::project::{normalize_inherent_projection, normalize_projection_ty}; pub use self::select::{ EvaluationCache, EvaluationResult, IntercrateAmbiguityCause, OverflowError, SelectionCache, SelectionContext, }; pub use self::specialize::specialization_graph::{ FutureCompatOverlapError, FutureCompatOverlapErrorKind, }; pub use self::specialize::{ OverlapError, specialization_graph, translate_args, translate_args_with_cause, }; pub use self::structural_normalize::StructurallyNormalizeExt; pub use self::util::{ BoundVarReplacer, PlaceholderReplacer, elaborate, expand_trait_aliases, impl_item_is_final, supertrait_def_ids, supertraits, transitive_bounds_that_define_assoc_item, upcast_choices, with_replaced_escaping_bound_vars, }; use crate::error_reporting::InferCtxtErrorExt; use crate::infer::outlives::env::OutlivesEnvironment; use crate::infer::{InferCtxt, TyCtxtInferExt}; use crate::regions::InferCtxtRegionExt; use crate::traits::query::evaluate_obligation::InferCtxtExt as _; #[derive(Debug)] pub struct FulfillmentError<'tcx> { pub obligation: PredicateObligation<'tcx>, pub code: FulfillmentErrorCode<'tcx>, /// Diagnostics only: the 'root' obligation which resulted in /// the failure to process `obligation`. This is the obligation /// that was initially passed to `register_predicate_obligation` pub root_obligation: PredicateObligation<'tcx>, } impl<'tcx> FulfillmentError<'tcx> { pub fn new( obligation: PredicateObligation<'tcx>, code: FulfillmentErrorCode<'tcx>, root_obligation: PredicateObligation<'tcx>, ) -> FulfillmentError<'tcx> { FulfillmentError { obligation, code, root_obligation } } pub fn is_true_error(&self) -> bool { match self.code { FulfillmentErrorCode::Select(_) | FulfillmentErrorCode::Project(_) | FulfillmentErrorCode::Subtype(_, _) | FulfillmentErrorCode::ConstEquate(_, _) => true, FulfillmentErrorCode::Cycle(_) | FulfillmentErrorCode::Ambiguity { overflow: _ } => { false } } } } #[derive(Clone)] pub enum FulfillmentErrorCode<'tcx> { /// Inherently impossible to fulfill; this trait is implemented if and only /// if it is already implemented. Cycle(PredicateObligations<'tcx>), Select(SelectionError<'tcx>), Project(MismatchedProjectionTypes<'tcx>), Subtype(ExpectedFound>, TypeError<'tcx>), // always comes from a SubtypePredicate ConstEquate(ExpectedFound>, TypeError<'tcx>), Ambiguity { /// Overflow is only `Some(suggest_recursion_limit)` when using the next generation /// trait solver `-Znext-solver`. With the old solver overflow is eagerly handled by /// emitting a fatal error instead. overflow: Option, }, } impl<'tcx> Debug for FulfillmentErrorCode<'tcx> { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { match *self { FulfillmentErrorCode::Select(ref e) => write!(f, "{e:?}"), FulfillmentErrorCode::Project(ref e) => write!(f, "{e:?}"), FulfillmentErrorCode::Subtype(ref a, ref b) => { write!(f, "CodeSubtypeError({a:?}, {b:?})") } FulfillmentErrorCode::ConstEquate(ref a, ref b) => { write!(f, "CodeConstEquateError({a:?}, {b:?})") } FulfillmentErrorCode::Ambiguity { overflow: None } => write!(f, "Ambiguity"), FulfillmentErrorCode::Ambiguity { overflow: Some(suggest_increasing_limit) } => { write!(f, "Overflow({suggest_increasing_limit})") } FulfillmentErrorCode::Cycle(ref cycle) => write!(f, "Cycle({cycle:?})"), } } } /// Whether to skip the leak check, as part of a future compatibility warning step. /// /// The "default" for skip-leak-check corresponds to the current /// behavior (do not skip the leak check) -- not the behavior we are /// transitioning into. #[derive(Copy, Clone, PartialEq, Eq, Debug, Default)] pub enum SkipLeakCheck { Yes, #[default] No, } impl SkipLeakCheck { fn is_yes(self) -> bool { self == SkipLeakCheck::Yes } } /// The mode that trait queries run in. #[derive(Copy, Clone, PartialEq, Eq, Debug)] pub enum TraitQueryMode { /// Standard/un-canonicalized queries get accurate /// spans etc. passed in and hence can do reasonable /// error reporting on their own. Standard, /// Canonical queries get dummy spans and hence /// must generally propagate errors to /// pre-canonicalization callsites. Canonical, } /// Creates predicate obligations from the generic bounds. #[instrument(level = "debug", skip(cause, param_env))] pub fn predicates_for_generics<'tcx>( cause: impl Fn(usize, Span) -> ObligationCause<'tcx>, param_env: ty::ParamEnv<'tcx>, generic_bounds: ty::InstantiatedPredicates<'tcx>, ) -> impl Iterator> { generic_bounds.into_iter().enumerate().map(move |(idx, (clause, span))| Obligation { cause: cause(idx, span), recursion_depth: 0, param_env, predicate: clause.as_predicate(), }) } /// Determines whether the type `ty` is known to meet `bound` and /// returns true if so. Returns false if `ty` either does not meet /// `bound` or is not known to meet bound (note that this is /// conservative towards *no impl*, which is the opposite of the /// `evaluate` methods). pub fn type_known_to_meet_bound_modulo_regions<'tcx>( infcx: &InferCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>, ty: Ty<'tcx>, def_id: DefId, ) -> bool { let trait_ref = ty::TraitRef::new(infcx.tcx, def_id, [ty]); pred_known_to_hold_modulo_regions(infcx, param_env, trait_ref) } /// FIXME(@lcnr): this function doesn't seem right and shouldn't exist? /// /// Ping me on zulip if you want to use this method and need help with finding /// an appropriate replacement. #[instrument(level = "debug", skip(infcx, param_env, pred), ret)] fn pred_known_to_hold_modulo_regions<'tcx>( infcx: &InferCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>, pred: impl Upcast, ty::Predicate<'tcx>>, ) -> bool { let obligation = Obligation::new(infcx.tcx, ObligationCause::dummy(), param_env, pred); let result = infcx.evaluate_obligation_no_overflow(&obligation); debug!(?result); if result.must_apply_modulo_regions() { true } else if result.may_apply() { // Sometimes obligations are ambiguous because the recursive evaluator // is not smart enough, so we fall back to fulfillment when we're not certain // that an obligation holds or not. Even still, we must make sure that // the we do no inference in the process of checking this obligation. let goal = infcx.resolve_vars_if_possible((obligation.predicate, obligation.param_env)); infcx.probe(|_| { let ocx = ObligationCtxt::new(infcx); ocx.register_obligation(obligation); let errors = ocx.select_all_or_error(); match errors.as_slice() { // Only known to hold if we did no inference. [] => infcx.resolve_vars_if_possible(goal) == goal, errors => { debug!(?errors); false } } }) } else { false } } #[instrument(level = "debug", skip(tcx, elaborated_env))] fn do_normalize_predicates<'tcx>( tcx: TyCtxt<'tcx>, cause: ObligationCause<'tcx>, elaborated_env: ty::ParamEnv<'tcx>, predicates: Vec>, ) -> Result>, ErrorGuaranteed> { let span = cause.span; // FIXME. We should really... do something with these region // obligations. But this call just continues the older // behavior (i.e., doesn't cause any new bugs), and it would // take some further refactoring to actually solve them. In // particular, we would have to handle implied bounds // properly, and that code is currently largely confined to // regionck (though I made some efforts to extract it // out). -nmatsakis // // @arielby: In any case, these obligations are checked // by wfcheck anyway, so I'm not sure we have to check // them here too, and we will remove this function when // we move over to lazy normalization *anyway*. let infcx = tcx.infer_ctxt().ignoring_regions().build(TypingMode::non_body_analysis()); let ocx = ObligationCtxt::new_with_diagnostics(&infcx); let predicates = ocx.normalize(&cause, elaborated_env, predicates); let errors = ocx.select_all_or_error(); if !errors.is_empty() { let reported = infcx.err_ctxt().report_fulfillment_errors(errors); return Err(reported); } debug!("do_normalize_predicates: normalized predicates = {:?}", predicates); // We can use the `elaborated_env` here; the region code only // cares about declarations like `'a: 'b`. // FIXME: It's very weird that we ignore region obligations but apparently // still need to use `resolve_regions` as we need the resolved regions in // the normalized predicates. let errors = infcx.resolve_regions(cause.body_id, elaborated_env, []); if !errors.is_empty() { tcx.dcx().span_delayed_bug( span, format!("failed region resolution while normalizing {elaborated_env:?}: {errors:?}"), ); } match infcx.fully_resolve(predicates) { Ok(predicates) => Ok(predicates), Err(fixup_err) => { // If we encounter a fixup error, it means that some type // variable wound up unconstrained. I actually don't know // if this can happen, and I certainly don't expect it to // happen often, but if it did happen it probably // represents a legitimate failure due to some kind of // unconstrained variable. // // @lcnr: Let's still ICE here for now. I want a test case // for that. span_bug!( span, "inference variables in normalized parameter environment: {}", fixup_err ); } } } // FIXME: this is gonna need to be removed ... /// Normalizes the parameter environment, reporting errors if they occur. #[instrument(level = "debug", skip(tcx))] pub fn normalize_param_env_or_error<'tcx>( tcx: TyCtxt<'tcx>, unnormalized_env: ty::ParamEnv<'tcx>, cause: ObligationCause<'tcx>, ) -> ty::ParamEnv<'tcx> { // I'm not wild about reporting errors here; I'd prefer to // have the errors get reported at a defined place (e.g., // during typeck). Instead I have all parameter // environments, in effect, going through this function // and hence potentially reporting errors. This ensures of // course that we never forget to normalize (the // alternative seemed like it would involve a lot of // manual invocations of this fn -- and then we'd have to // deal with the errors at each of those sites). // // In any case, in practice, typeck constructs all the // parameter environments once for every fn as it goes, // and errors will get reported then; so outside of type inference we // can be sure that no errors should occur. let mut predicates: Vec<_> = util::elaborate( tcx, unnormalized_env.caller_bounds().into_iter().map(|predicate| { if tcx.features().generic_const_exprs() { return predicate; } struct ConstNormalizer<'tcx>(TyCtxt<'tcx>); impl<'tcx> TypeFolder> for ConstNormalizer<'tcx> { fn cx(&self) -> TyCtxt<'tcx> { self.0 } fn fold_const(&mut self, c: ty::Const<'tcx>) -> ty::Const<'tcx> { // FIXME(return_type_notation): track binders in this normalizer, as // `ty::Const::normalize` can only work with properly preserved binders. if c.has_escaping_bound_vars() { return ty::Const::new_misc_error(self.0); } // While it is pretty sus to be evaluating things with an empty param env, it // should actually be okay since without `feature(generic_const_exprs)` the only // const arguments that have a non-empty param env are array repeat counts. These // do not appear in the type system though. if let ty::ConstKind::Unevaluated(uv) = c.kind() && self.0.def_kind(uv.def) == DefKind::AnonConst { let infcx = self.0.infer_ctxt().build(TypingMode::non_body_analysis()); let c = evaluate_const(&infcx, c, ty::ParamEnv::empty()); // We should never wind up with any `infcx` local state when normalizing anon consts // under min const generics. assert!(!c.has_infer() && !c.has_placeholders()); return c; } c } } // This whole normalization step is a hack to work around the fact that // `normalize_param_env_or_error` is fundamentally broken from using an // unnormalized param env with a trait solver that expects the param env // to be normalized. // // When normalizing the param env we can end up evaluating obligations // that have been normalized but can only be proven via a where clause // which is still in its unnormalized form. example: // // Attempting to prove `T: Trait<::Assoc>` in a param env // with a `T: Trait<::Assoc>` where clause will fail because // we first normalize obligations before proving them so we end up proving // `T: Trait`. Since lazy normalization is not implemented equating `u8` // with `::Assoc` fails outright so we incorrectly believe that // we cannot prove `T: Trait`. // // The same thing is true for const generics- attempting to prove // `T: Trait` with the same thing as a where clauses // will fail. After normalization we may be attempting to prove `T: Trait<4>` with // the unnormalized where clause `T: Trait`. In order // for the obligation to hold `4` must be equal to `ConstKind::Unevaluated(...)` // but as we do not have lazy norm implemented, equating the two consts fails outright. // // Ideally we would not normalize consts here at all but it is required for backwards // compatibility. Eventually when lazy norm is implemented this can just be removed. // We do not normalize types here as there is no backwards compatibility requirement // for us to do so. // // FIXME(-Znext-solver): remove this hack since we have deferred projection equality predicate.fold_with(&mut ConstNormalizer(tcx)) }), ) .collect(); debug!("normalize_param_env_or_error: elaborated-predicates={:?}", predicates); let elaborated_env = ty::ParamEnv::new(tcx.mk_clauses(&predicates)); if !elaborated_env.has_aliases() { return elaborated_env; } // HACK: we are trying to normalize the param-env inside *itself*. The problem is that // normalization expects its param-env to be already normalized, which means we have // a circularity. // // The way we handle this is by normalizing the param-env inside an unnormalized version // of the param-env, which means that if the param-env contains unnormalized projections, // we'll have some normalization failures. This is unfortunate. // // Lazy normalization would basically handle this by treating just the // normalizing-a-trait-ref-requires-itself cycles as evaluation failures. // // Inferred outlives bounds can create a lot of `TypeOutlives` predicates for associated // types, so to make the situation less bad, we normalize all the predicates *but* // the `TypeOutlives` predicates first inside the unnormalized parameter environment, and // then we normalize the `TypeOutlives` bounds inside the normalized parameter environment. // // This works fairly well because trait matching does not actually care about param-env // TypeOutlives predicates - these are normally used by regionck. let outlives_predicates: Vec<_> = predicates .extract_if(.., |predicate| { matches!(predicate.kind().skip_binder(), ty::ClauseKind::TypeOutlives(..)) }) .collect(); debug!( "normalize_param_env_or_error: predicates=(non-outlives={:?}, outlives={:?})", predicates, outlives_predicates ); let Ok(non_outlives_predicates) = do_normalize_predicates(tcx, cause.clone(), elaborated_env, predicates) else { // An unnormalized env is better than nothing. debug!("normalize_param_env_or_error: errored resolving non-outlives predicates"); return elaborated_env; }; debug!("normalize_param_env_or_error: non-outlives predicates={:?}", non_outlives_predicates); // Not sure whether it is better to include the unnormalized TypeOutlives predicates // here. I believe they should not matter, because we are ignoring TypeOutlives param-env // predicates here anyway. Keeping them here anyway because it seems safer. let outlives_env = non_outlives_predicates.iter().chain(&outlives_predicates).cloned(); let outlives_env = ty::ParamEnv::new(tcx.mk_clauses_from_iter(outlives_env)); let Ok(outlives_predicates) = do_normalize_predicates(tcx, cause, outlives_env, outlives_predicates) else { // An unnormalized env is better than nothing. debug!("normalize_param_env_or_error: errored resolving outlives predicates"); return elaborated_env; }; debug!("normalize_param_env_or_error: outlives predicates={:?}", outlives_predicates); let mut predicates = non_outlives_predicates; predicates.extend(outlives_predicates); debug!("normalize_param_env_or_error: final predicates={:?}", predicates); ty::ParamEnv::new(tcx.mk_clauses(&predicates)) } #[derive(Debug)] pub enum EvaluateConstErr { /// The constant being evaluated was either a generic parameter or inference variable, *or*, /// some unevaluated constant with either generic parameters or inference variables in its /// generic arguments. HasGenericsOrInfers, /// The type this constant evalauted to is not valid for use in const generics. This should /// always result in an error when checking the constant is correctly typed for the parameter /// it is an argument to, so a bug is delayed when encountering this. InvalidConstParamTy(ErrorGuaranteed), /// CTFE failed to evaluate the constant in some unrecoverable way (e.g. encountered a `panic!`). /// This is also used when the constant was already tainted by error. EvaluationFailure(ErrorGuaranteed), } // FIXME(BoxyUwU): Private this once we `generic_const_exprs` isn't doing its own normalization routine // FIXME(generic_const_exprs): Consider accepting a `ty::UnevaluatedConst` when we are not rolling our own // normalization scheme /// Evaluates a type system constant returning a `ConstKind::Error` in cases where CTFE failed and /// returning the passed in constant if it was not fully concrete (i.e. depended on generic parameters /// or inference variables) /// /// You should not call this function unless you are implementing normalization itself. Prefer to use /// `normalize_erasing_regions` or the `normalize` functions on `ObligationCtxt`/`FnCtxt`/`InferCtxt`. pub fn evaluate_const<'tcx>( infcx: &InferCtxt<'tcx>, ct: ty::Const<'tcx>, param_env: ty::ParamEnv<'tcx>, ) -> ty::Const<'tcx> { match try_evaluate_const(infcx, ct, param_env) { Ok(ct) => ct, Err(EvaluateConstErr::EvaluationFailure(e) | EvaluateConstErr::InvalidConstParamTy(e)) => { ty::Const::new_error(infcx.tcx, e) } Err(EvaluateConstErr::HasGenericsOrInfers) => ct, } } // FIXME(BoxyUwU): Private this once we `generic_const_exprs` isn't doing its own normalization routine // FIXME(generic_const_exprs): Consider accepting a `ty::UnevaluatedConst` when we are not rolling our own // normalization scheme /// Evaluates a type system constant making sure to not allow constants that depend on generic parameters /// or inference variables to succeed in evaluating. /// /// You should not call this function unless you are implementing normalization itself. Prefer to use /// `normalize_erasing_regions` or the `normalize` functions on `ObligationCtxt`/`FnCtxt`/`InferCtxt`. #[instrument(level = "debug", skip(infcx), ret)] pub fn try_evaluate_const<'tcx>( infcx: &InferCtxt<'tcx>, ct: ty::Const<'tcx>, param_env: ty::ParamEnv<'tcx>, ) -> Result, EvaluateConstErr> { let tcx = infcx.tcx; let ct = infcx.resolve_vars_if_possible(ct); debug!(?ct); match ct.kind() { ty::ConstKind::Value(..) => Ok(ct), ty::ConstKind::Error(e) => Err(EvaluateConstErr::EvaluationFailure(e)), ty::ConstKind::Param(_) | ty::ConstKind::Infer(_) | ty::ConstKind::Bound(_, _) | ty::ConstKind::Placeholder(_) | ty::ConstKind::Expr(_) => Err(EvaluateConstErr::HasGenericsOrInfers), ty::ConstKind::Unevaluated(uv) => { // Postpone evaluation of constants that depend on generic parameters or // inference variables. // // We use `TypingMode::PostAnalysis` here which is not *technically* correct // to be revealing opaque types here as borrowcheck has not run yet. However, // CTFE itself uses `TypingMode::PostAnalysis` unconditionally even during // typeck and not doing so has a lot of (undesirable) fallout (#101478, #119821). // As a result we always use a revealed env when resolving the instance to evaluate. // // FIXME: `const_eval_resolve_for_typeck` should probably just modify the env itself // instead of having this logic here let (args, typing_env) = if tcx.features().generic_const_exprs() && uv.has_non_region_infer() { // `feature(generic_const_exprs)` causes anon consts to inherit all parent generics. This can cause // inference variables and generic parameters to show up in `ty::Const` even though the anon const // does not actually make use of them. We handle this case specially and attempt to evaluate anyway. match tcx.thir_abstract_const(uv.def) { Ok(Some(ct)) => { let ct = tcx.expand_abstract_consts(ct.instantiate(tcx, uv.args)); if let Err(e) = ct.error_reported() { return Err(EvaluateConstErr::EvaluationFailure(e)); } else if ct.has_non_region_infer() || ct.has_non_region_param() { // If the anon const *does* actually use generic parameters or inference variables from // the generic arguments provided for it, then we should *not* attempt to evaluate it. return Err(EvaluateConstErr::HasGenericsOrInfers); } else { let args = replace_param_and_infer_args_with_placeholder(tcx, uv.args); let typing_env = infcx .typing_env(tcx.erase_regions(param_env)) .with_post_analysis_normalized(tcx); (args, typing_env) } } Err(_) | Ok(None) => { let args = GenericArgs::identity_for_item(tcx, uv.def); let typing_env = ty::TypingEnv::post_analysis(tcx, uv.def); (args, typing_env) } } } else if tcx.def_kind(uv.def) == DefKind::AnonConst && uv.has_non_region_infer() { // FIXME: remove this when `const_evaluatable_unchecked` is a hard error. // // Diagnostics will sometimes replace the identity args of anon consts in // array repeat expr counts with inference variables so we have to handle this // even though it is not something we should ever actually encounter. // // Array repeat expr counts are allowed to syntactically use generic parameters // but must not actually depend on them in order to evalaute successfully. This means // that it is actually fine to evalaute them in their own environment rather than with // the actually provided generic arguments. tcx.dcx().delayed_bug( "Encountered anon const with inference variable args but no error reported", ); let args = GenericArgs::identity_for_item(tcx, uv.def); let typing_env = ty::TypingEnv::post_analysis(tcx, uv.def); (args, typing_env) } else { // FIXME: This codepath is reachable under `associated_const_equality` and in the // future will be reachable by `min_generic_const_args`. We should handle inference // variables and generic parameters properly instead of doing nothing. let typing_env = infcx .typing_env(tcx.erase_regions(param_env)) .with_post_analysis_normalized(tcx); (uv.args, typing_env) }; let uv = ty::UnevaluatedConst::new(uv.def, args); let erased_uv = tcx.erase_regions(uv); use rustc_middle::mir::interpret::ErrorHandled; match tcx.const_eval_resolve_for_typeck(typing_env, erased_uv, DUMMY_SP) { Ok(Ok(val)) => Ok(ty::Const::new_value( tcx, val, tcx.type_of(uv.def).instantiate(tcx, uv.args), )), Ok(Err(_)) => { let e = tcx.dcx().delayed_bug( "Type system constant with non valtree'able type evaluated but no error emitted", ); Err(EvaluateConstErr::InvalidConstParamTy(e)) } Err(ErrorHandled::Reported(info, _)) => { Err(EvaluateConstErr::EvaluationFailure(info.into())) } Err(ErrorHandled::TooGeneric(_)) => Err(EvaluateConstErr::HasGenericsOrInfers), } } } } /// Replaces args that reference param or infer variables with suitable /// placeholders. This function is meant to remove these param and infer /// args when they're not actually needed to evaluate a constant. fn replace_param_and_infer_args_with_placeholder<'tcx>( tcx: TyCtxt<'tcx>, args: GenericArgsRef<'tcx>, ) -> GenericArgsRef<'tcx> { struct ReplaceParamAndInferWithPlaceholder<'tcx> { tcx: TyCtxt<'tcx>, idx: u32, } impl<'tcx> TypeFolder> for ReplaceParamAndInferWithPlaceholder<'tcx> { fn cx(&self) -> TyCtxt<'tcx> { self.tcx } fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> { if let ty::Infer(_) = t.kind() { let idx = { let idx = self.idx; self.idx += 1; idx }; Ty::new_placeholder( self.tcx, ty::PlaceholderType { universe: ty::UniverseIndex::ROOT, bound: ty::BoundTy { var: ty::BoundVar::from_u32(idx), kind: ty::BoundTyKind::Anon, }, }, ) } else { t.super_fold_with(self) } } fn fold_const(&mut self, c: ty::Const<'tcx>) -> ty::Const<'tcx> { if let ty::ConstKind::Infer(_) = c.kind() { ty::Const::new_placeholder( self.tcx, ty::PlaceholderConst { universe: ty::UniverseIndex::ROOT, bound: ty::BoundVar::from_u32({ let idx = self.idx; self.idx += 1; idx }), }, ) } else { c.super_fold_with(self) } } } args.fold_with(&mut ReplaceParamAndInferWithPlaceholder { tcx, idx: 0 }) } /// Normalizes the predicates and checks whether they hold in an empty environment. If this /// returns true, then either normalize encountered an error or one of the predicates did not /// hold. Used when creating vtables to check for unsatisfiable methods. This should not be /// used during analysis. pub fn impossible_predicates<'tcx>(tcx: TyCtxt<'tcx>, predicates: Vec>) -> bool { debug!("impossible_predicates(predicates={:?})", predicates); let (infcx, param_env) = tcx.infer_ctxt().build_with_typing_env(ty::TypingEnv::fully_monomorphized()); let ocx = ObligationCtxt::new(&infcx); let predicates = ocx.normalize(&ObligationCause::dummy(), param_env, predicates); for predicate in predicates { let obligation = Obligation::new(tcx, ObligationCause::dummy(), param_env, predicate); ocx.register_obligation(obligation); } let errors = ocx.select_all_or_error(); if !errors.is_empty() { return true; } // Leak check for any higher-ranked trait mismatches. // We only need to do this in the old solver, since the new solver already // leak-checks. if !infcx.next_trait_solver() && infcx.leak_check(ty::UniverseIndex::ROOT, None).is_err() { return true; } false } fn instantiate_and_check_impossible_predicates<'tcx>( tcx: TyCtxt<'tcx>, key: (DefId, GenericArgsRef<'tcx>), ) -> bool { debug!("instantiate_and_check_impossible_predicates(key={:?})", key); let mut predicates = tcx.predicates_of(key.0).instantiate(tcx, key.1).predicates; // Specifically check trait fulfillment to avoid an error when trying to resolve // associated items. if let Some(trait_def_id) = tcx.trait_of_item(key.0) { let trait_ref = ty::TraitRef::from_method(tcx, trait_def_id, key.1); predicates.push(trait_ref.upcast(tcx)); } predicates.retain(|predicate| !predicate.has_param()); let result = impossible_predicates(tcx, predicates); debug!("instantiate_and_check_impossible_predicates(key={:?}) = {:?}", key, result); result } /// Checks whether a trait's associated item is impossible to reference on a given impl. /// /// This only considers predicates that reference the impl's generics, and not /// those that reference the method's generics. fn is_impossible_associated_item( tcx: TyCtxt<'_>, (impl_def_id, trait_item_def_id): (DefId, DefId), ) -> bool { struct ReferencesOnlyParentGenerics<'tcx> { tcx: TyCtxt<'tcx>, generics: &'tcx ty::Generics, trait_item_def_id: DefId, } impl<'tcx> ty::TypeVisitor> for ReferencesOnlyParentGenerics<'tcx> { type Result = ControlFlow<()>; fn visit_ty(&mut self, t: Ty<'tcx>) -> Self::Result { // If this is a parameter from the trait item's own generics, then bail if let ty::Param(param) = *t.kind() && let param_def_id = self.generics.type_param(param, self.tcx).def_id && self.tcx.parent(param_def_id) == self.trait_item_def_id { return ControlFlow::Break(()); } t.super_visit_with(self) } fn visit_region(&mut self, r: ty::Region<'tcx>) -> Self::Result { if let ty::ReEarlyParam(param) = r.kind() && let param_def_id = self.generics.region_param(param, self.tcx).def_id && self.tcx.parent(param_def_id) == self.trait_item_def_id { return ControlFlow::Break(()); } ControlFlow::Continue(()) } fn visit_const(&mut self, ct: ty::Const<'tcx>) -> Self::Result { if let ty::ConstKind::Param(param) = ct.kind() && let param_def_id = self.generics.const_param(param, self.tcx).def_id && self.tcx.parent(param_def_id) == self.trait_item_def_id { return ControlFlow::Break(()); } ct.super_visit_with(self) } } let generics = tcx.generics_of(trait_item_def_id); let predicates = tcx.predicates_of(trait_item_def_id); // Be conservative in cases where we have `W` and a method like `Self: Sized`, // since that method *may* have some substitutions where the predicates hold. // // This replicates the logic we use in coherence. let infcx = tcx .infer_ctxt() .ignoring_regions() .with_next_trait_solver(true) .build(TypingMode::Coherence); let param_env = ty::ParamEnv::empty(); let fresh_args = infcx.fresh_args_for_item(tcx.def_span(impl_def_id), impl_def_id); let impl_trait_ref = tcx .impl_trait_ref(impl_def_id) .expect("expected impl to correspond to trait") .instantiate(tcx, fresh_args); let mut visitor = ReferencesOnlyParentGenerics { tcx, generics, trait_item_def_id }; let predicates_for_trait = predicates.predicates.iter().filter_map(|(pred, span)| { pred.visit_with(&mut visitor).is_continue().then(|| { Obligation::new( tcx, ObligationCause::dummy_with_span(*span), param_env, ty::EarlyBinder::bind(*pred).instantiate(tcx, impl_trait_ref.args), ) }) }); let ocx = ObligationCtxt::new(&infcx); ocx.register_obligations(predicates_for_trait); !ocx.select_where_possible().is_empty() } pub fn provide(providers: &mut Providers) { dyn_compatibility::provide(providers); vtable::provide(providers); *providers = Providers { specialization_graph_of: specialize::specialization_graph_provider, specializes: specialize::specializes, specialization_enabled_in: specialize::specialization_enabled_in, instantiate_and_check_impossible_predicates, is_impossible_associated_item, ..*providers }; }