use rustc_data_structures::fx::FxHashSet; use rustc_infer::traits::query::type_op::DropckOutlives; use rustc_middle::traits::query::{DropckConstraint, DropckOutlivesResult}; use rustc_middle::ty::{self, EarlyBinder, ParamEnvAnd, Ty, TyCtxt}; use rustc_span::Span; use tracing::{debug, instrument}; use crate::solve::NextSolverError; use crate::traits::query::NoSolution; use crate::traits::query::normalize::QueryNormalizeExt; use crate::traits::{FromSolverError, Normalized, ObligationCause, ObligationCtxt}; /// This returns true if the type `ty` is "trivial" for /// dropck-outlives -- that is, if it doesn't require any types to /// outlive. This is similar but not *quite* the same as the /// `needs_drop` test in the compiler already -- that is, for every /// type T for which this function return true, needs-drop would /// return `false`. But the reverse does not hold: in particular, /// `needs_drop` returns false for `PhantomData`, but it is not /// trivial for dropck-outlives. /// /// Note also that `needs_drop` requires a "global" type (i.e., one /// with erased regions), but this function does not. /// // FIXME(@lcnr): remove this module and move this function somewhere else. pub fn trivial_dropck_outlives<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> bool { match ty.kind() { // None of these types have a destructor and hence they do not // require anything in particular to outlive the dtor's // execution. ty::Infer(ty::FreshIntTy(_)) | ty::Infer(ty::FreshFloatTy(_)) | ty::Bool | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Never | ty::FnDef(..) | ty::FnPtr(..) | ty::Char | ty::CoroutineWitness(..) | ty::RawPtr(_, _) | ty::Ref(..) | ty::Str | ty::Foreign(..) | ty::Error(_) => true, // `T is PAT` and `[T]` have same properties as T. ty::Pat(ty, _) | ty::Slice(ty) => trivial_dropck_outlives(tcx, *ty), ty::Array(ty, size) => { // Empty array never has a dtor. See issue #110288. match size.try_to_target_usize(tcx) { Some(0) => true, _ => trivial_dropck_outlives(tcx, *ty), } } // (T1..Tn) and closures have same properties as T1..Tn -- // check if *all* of them are trivial. ty::Tuple(tys) => tys.iter().all(|t| trivial_dropck_outlives(tcx, t)), ty::Closure(_, args) => trivial_dropck_outlives(tcx, args.as_closure().tupled_upvars_ty()), ty::CoroutineClosure(_, args) => { trivial_dropck_outlives(tcx, args.as_coroutine_closure().tupled_upvars_ty()) } ty::Adt(def, _) => { if def.is_manually_drop() { // `ManuallyDrop` never has a dtor. true } else { // Other types might. Moreover, PhantomData doesn't // have a dtor, but it is considered to own its // content, so it is non-trivial. Unions can have `impl Drop`, // and hence are non-trivial as well. false } } // The following *might* require a destructor: needs deeper inspection. ty::Dynamic(..) | ty::Alias(..) | ty::Param(_) | ty::Placeholder(..) | ty::Infer(_) | ty::Bound(..) | ty::Coroutine(..) | ty::UnsafeBinder(_) => false, } } pub fn compute_dropck_outlives_inner<'tcx>( ocx: &ObligationCtxt<'_, 'tcx>, goal: ParamEnvAnd<'tcx, DropckOutlives<'tcx>>, span: Span, ) -> Result, NoSolution> { match compute_dropck_outlives_with_errors(ocx, goal, span) { Ok(r) => Ok(r), Err(_) => Err(NoSolution), } } pub fn compute_dropck_outlives_with_errors<'tcx, E>( ocx: &ObligationCtxt<'_, 'tcx, E>, goal: ParamEnvAnd<'tcx, DropckOutlives<'tcx>>, span: Span, ) -> Result, Vec> where E: FromSolverError<'tcx, NextSolverError<'tcx>>, { let tcx = ocx.infcx.tcx; let ParamEnvAnd { param_env, value: DropckOutlives { dropped_ty } } = goal; let mut result = DropckOutlivesResult { kinds: vec![], overflows: vec![] }; // A stack of types left to process. Each round, we pop // something from the stack and invoke // `dtorck_constraint_for_ty_inner`. This may produce new types that // have to be pushed on the stack. This continues until we have explored // all the reachable types from the type `dropped_ty`. // // Example: Imagine that we have the following code: // // ```rust // struct A { // value: B, // children: Vec, // } // // struct B { // value: u32 // } // // fn f() { // let a: A = ...; // .. // } // here, `a` is dropped // ``` // // at the point where `a` is dropped, we need to figure out // which types inside of `a` contain region data that may be // accessed by any destructors in `a`. We begin by pushing `A` // onto the stack, as that is the type of `a`. We will then // invoke `dtorck_constraint_for_ty_inner` which will expand `A` // into the types of its fields `(B, Vec)`. These will get // pushed onto the stack. Eventually, expanding `Vec` will // lead to us trying to push `A` a second time -- to prevent // infinite recursion, we notice that `A` was already pushed // once and stop. let mut ty_stack = vec![(dropped_ty, 0)]; // Set used to detect infinite recursion. let mut ty_set = FxHashSet::default(); let cause = ObligationCause::dummy_with_span(span); let mut constraints = DropckConstraint::empty(); while let Some((ty, depth)) = ty_stack.pop() { debug!( "{} kinds, {} overflows, {} ty_stack", result.kinds.len(), result.overflows.len(), ty_stack.len() ); dtorck_constraint_for_ty_inner( tcx, ocx.infcx.typing_env(param_env), span, depth, ty, &mut constraints, ); // "outlives" represent types/regions that may be touched // by a destructor. result.kinds.append(&mut constraints.outlives); result.overflows.append(&mut constraints.overflows); // If we have even one overflow, we should stop trying to evaluate further -- // chances are, the subsequent overflows for this evaluation won't provide useful // information and will just decrease the speed at which we can emit these errors // (since we'll be printing for just that much longer for the often enormous types // that result here). if !result.overflows.is_empty() { break; } // dtorck types are "types that will get dropped but which // do not themselves define a destructor", more or less. We have // to push them onto the stack to be expanded. for ty in constraints.dtorck_types.drain(..) { let ty = if let Ok(Normalized { value: ty, obligations }) = ocx.infcx.at(&cause, param_env).query_normalize(ty) { ocx.register_obligations(obligations); debug!("dropck_outlives: ty from dtorck_types = {:?}", ty); ty } else { // Flush errors b/c `deeply_normalize` doesn't expect pending // obligations, and we may have pending obligations from the // branch above (from other types). let errors = ocx.select_all_or_error(); if !errors.is_empty() { return Err(errors); } // When query normalization fails, we don't get back an interesting // reason that we could use to report an error in borrowck. In order to turn // this into a reportable error, we deeply normalize again. We don't expect // this to succeed, so delay a bug if it does. match ocx.deeply_normalize(&cause, param_env, ty) { Ok(_) => { tcx.dcx().span_delayed_bug( span, format!( "query normalize succeeded of {ty}, \ but deep normalize failed", ), ); ty } Err(errors) => return Err(errors), } }; match ty.kind() { // All parameters live for the duration of the // function. ty::Param(..) => {} // A projection that we couldn't resolve - it // might have a destructor. ty::Alias(..) => { result.kinds.push(ty.into()); } _ => { if ty_set.insert(ty) { ty_stack.push((ty, depth + 1)); } } } } } debug!("dropck_outlives: result = {:#?}", result); Ok(result) } /// Returns a set of constraints that needs to be satisfied in /// order for `ty` to be valid for destruction. #[instrument(level = "debug", skip(tcx, typing_env, span, constraints))] pub fn dtorck_constraint_for_ty_inner<'tcx>( tcx: TyCtxt<'tcx>, typing_env: ty::TypingEnv<'tcx>, span: Span, depth: usize, ty: Ty<'tcx>, constraints: &mut DropckConstraint<'tcx>, ) { if !tcx.recursion_limit().value_within_limit(depth) { constraints.overflows.push(ty); return; } if trivial_dropck_outlives(tcx, ty) { return; } match ty.kind() { ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Str | ty::Never | ty::Foreign(..) | ty::RawPtr(..) | ty::Ref(..) | ty::FnDef(..) | ty::FnPtr(..) | ty::CoroutineWitness(..) => { // these types never have a destructor } ty::Pat(ety, _) | ty::Array(ety, _) | ty::Slice(ety) => { // single-element containers, behave like their element rustc_data_structures::stack::ensure_sufficient_stack(|| { dtorck_constraint_for_ty_inner(tcx, typing_env, span, depth + 1, *ety, constraints) }); } ty::Tuple(tys) => rustc_data_structures::stack::ensure_sufficient_stack(|| { for ty in tys.iter() { dtorck_constraint_for_ty_inner(tcx, typing_env, span, depth + 1, ty, constraints); } }), ty::Closure(_, args) => rustc_data_structures::stack::ensure_sufficient_stack(|| { for ty in args.as_closure().upvar_tys() { dtorck_constraint_for_ty_inner(tcx, typing_env, span, depth + 1, ty, constraints); } }), ty::CoroutineClosure(_, args) => { rustc_data_structures::stack::ensure_sufficient_stack(|| { for ty in args.as_coroutine_closure().upvar_tys() { dtorck_constraint_for_ty_inner( tcx, typing_env, span, depth + 1, ty, constraints, ); } }) } ty::Coroutine(def_id, args) => { // rust-lang/rust#49918: Locals can be stored across await points in the coroutine, // called interior/witness types. Since we do not compute these witnesses until after // building MIR, we consider all coroutines to unconditionally require a drop during // MIR building. However, considering the coroutine to unconditionally require a drop // here may unnecessarily require its upvars' regions to be live when they don't need // to be, leading to borrowck errors: . // // Here, we implement a more precise approximation for the coroutine's dtorck constraint // by considering whether any of the interior types needs drop. Note that this is still // an approximation because the coroutine interior has its regions erased, so we must add // *all* of the upvars to live types set if we find that *any* interior type needs drop. // This is because any of the regions captured in the upvars may be stored in the interior, // which then has its regions replaced by a binder (conceptually erasing the regions), // so there's no way to enforce that the precise region in the interior type is live // since we've lost that information by this point. // // Note also that this check requires that the coroutine's upvars are use-live, since // a region from a type that does not have a destructor that was captured in an upvar // may flow into an interior type with a destructor. This is stronger than requiring // the upvars are drop-live. // // For example, if we capture two upvar references `&'1 (), &'2 ()` and have some type // in the interior, `for<'r> { NeedsDrop<'r> }`, we have no way to tell whether the // region `'r` came from the `'1` or `'2` region, so we require both are live. This // could even be unnecessary if `'r` was actually a `'static` region or some region // local to the coroutine! That's why it's an approximation. let args = args.as_coroutine(); // Note that we don't care about whether the resume type has any drops since this is // redundant; there is no storage for the resume type, so if it is actually stored // in the interior, we'll already detect the need for a drop by checking the interior. // // FIXME(@lcnr): Why do we erase regions in the env here? Seems odd let typing_env = tcx.erase_and_anonymize_regions(typing_env); let needs_drop = tcx.mir_coroutine_witnesses(def_id).is_some_and(|witness| { witness.field_tys.iter().any(|field| field.ty.needs_drop(tcx, typing_env)) }); if needs_drop { // Pushing types directly to `constraints.outlives` is equivalent // to requiring them to be use-live, since if we were instead to // recurse on them like we do below, we only end up collecting the // types that are relevant for drop-liveness. constraints.outlives.extend(args.upvar_tys().iter().map(ty::GenericArg::from)); constraints.outlives.push(args.resume_ty().into()); } else { // Even if a witness type doesn't need a drop, we still require that // the upvars are drop-live. This is only needed if we aren't already // counting *all* of the upvars as use-live above, since use-liveness // is a *stronger requirement* than drop-liveness. Recursing here // unconditionally would just be collecting duplicated types for no // reason. for ty in args.upvar_tys() { dtorck_constraint_for_ty_inner( tcx, typing_env, span, depth + 1, ty, constraints, ); } } } ty::Adt(def, args) => { let DropckConstraint { dtorck_types, outlives, overflows } = tcx.at(span).adt_dtorck_constraint(def.did()); // FIXME: we can try to recursively `dtorck_constraint_on_ty` // there, but that needs some way to handle cycles. constraints .dtorck_types .extend(dtorck_types.iter().map(|t| EarlyBinder::bind(*t).instantiate(tcx, args))); constraints .outlives .extend(outlives.iter().map(|t| EarlyBinder::bind(*t).instantiate(tcx, args))); constraints .overflows .extend(overflows.iter().map(|t| EarlyBinder::bind(*t).instantiate(tcx, args))); } // Objects must be alive in order for their destructor // to be called. ty::Dynamic(..) => { constraints.outlives.push(ty.into()); } // Types that can't be resolved. Pass them forward. ty::Alias(..) | ty::Param(..) => { constraints.dtorck_types.push(ty); } // Can't instantiate binder here. ty::UnsafeBinder(_) => { constraints.dtorck_types.push(ty); } ty::Placeholder(..) | ty::Bound(..) | ty::Infer(..) | ty::Error(_) => { // By the time this code runs, all type variables ought to // be fully resolved. tcx.dcx().span_delayed_bug(span, format!("Unresolved type in dropck: {:?}.", ty)); } } }