//! Candidate assembly. //! //! The selection process begins by examining all in-scope impls, //! caller obligations, and so forth and assembling a list of //! candidates. See the [rustc dev guide] for more details. //! //! [rustc dev guide]:https://rustc-dev-guide.rust-lang.org/traits/resolution.html#candidate-assembly use std::ops::ControlFlow; use hir::LangItem; use hir::def_id::DefId; use rustc_data_structures::fx::{FxHashSet, FxIndexSet}; use rustc_hir::{self as hir, CoroutineDesugaring, CoroutineKind}; use rustc_infer::traits::{Obligation, PolyTraitObligation, SelectionError}; use rustc_middle::ty::fast_reject::DeepRejectCtxt; use rustc_middle::ty::{self, SizedTraitKind, Ty, TypeVisitableExt, TypingMode, elaborate}; use rustc_middle::{bug, span_bug}; use tracing::{debug, instrument, trace}; use super::SelectionCandidate::*; use super::{SelectionCandidateSet, SelectionContext, TraitObligationStack}; use crate::traits::util; impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> { #[instrument(skip(self, stack), level = "debug")] pub(super) fn assemble_candidates<'o>( &mut self, stack: &TraitObligationStack<'o, 'tcx>, ) -> Result, SelectionError<'tcx>> { let TraitObligationStack { obligation, .. } = *stack; let obligation = &Obligation { param_env: obligation.param_env, cause: obligation.cause.clone(), recursion_depth: obligation.recursion_depth, predicate: self.infcx.resolve_vars_if_possible(obligation.predicate), }; if obligation.predicate.skip_binder().self_ty().is_ty_var() { debug!(ty = ?obligation.predicate.skip_binder().self_ty(), "ambiguous inference var or opaque type"); // Self is a type variable (e.g., `_: AsRef`). // // This is somewhat problematic, as the current scheme can't really // handle it turning to be a projection. This does end up as truly // ambiguous in most cases anyway. // // Take the fast path out - this also improves // performance by preventing assemble_candidates_from_impls from // matching every impl for this trait. return Ok(SelectionCandidateSet { vec: vec![], ambiguous: true }); } let mut candidates = SelectionCandidateSet { vec: Vec::new(), ambiguous: false }; // Negative trait predicates have different rules than positive trait predicates. if obligation.polarity() == ty::PredicatePolarity::Negative { self.assemble_candidates_for_trait_alias(obligation, &mut candidates); self.assemble_candidates_from_impls(obligation, &mut candidates); self.assemble_candidates_from_caller_bounds(stack, &mut candidates)?; } else { self.assemble_candidates_for_trait_alias(obligation, &mut candidates); // Other bounds. Consider both in-scope bounds from fn decl // and applicable impls. There is a certain set of precedence rules here. let def_id = obligation.predicate.def_id(); let tcx = self.tcx(); let lang_item = tcx.as_lang_item(def_id); match lang_item { Some(LangItem::Copy | LangItem::Clone) => { debug!(obligation_self_ty = ?obligation.predicate.skip_binder().self_ty()); // User-defined copy impls are permitted, but only for // structs and enums. self.assemble_candidates_from_impls(obligation, &mut candidates); // For other types, we'll use the builtin rules. self.assemble_builtin_copy_clone_candidate( obligation.predicate.self_ty().skip_binder(), &mut candidates, ); } Some(LangItem::DiscriminantKind) => { // `DiscriminantKind` is automatically implemented for every type. candidates.vec.push(BuiltinCandidate); } Some(LangItem::PointeeTrait) => { // `Pointee` is automatically implemented for every type. candidates.vec.push(BuiltinCandidate); } Some(LangItem::Sized) => { self.assemble_builtin_sized_candidate( obligation.predicate.self_ty().skip_binder(), &mut candidates, SizedTraitKind::Sized, ); } Some(LangItem::MetaSized) => { self.assemble_builtin_sized_candidate( obligation.predicate.self_ty().skip_binder(), &mut candidates, SizedTraitKind::MetaSized, ); } Some(LangItem::PointeeSized) => { bug!("`PointeeSized` is removed during lowering"); } Some(LangItem::Unsize) => { self.assemble_candidates_for_unsizing(obligation, &mut candidates); } Some(LangItem::Destruct) => { self.assemble_const_destruct_candidates(obligation, &mut candidates); } Some(LangItem::TransmuteTrait) => { // User-defined transmutability impls are permitted. self.assemble_candidates_from_impls(obligation, &mut candidates); self.assemble_candidates_for_transmutability(obligation, &mut candidates); } Some(LangItem::Tuple) => { self.assemble_candidate_for_tuple(obligation, &mut candidates); } Some(LangItem::FnPtrTrait) => { self.assemble_candidates_for_fn_ptr_trait(obligation, &mut candidates); } Some(LangItem::BikeshedGuaranteedNoDrop) => { self.assemble_candidates_for_bikeshed_guaranteed_no_drop_trait( obligation, &mut candidates, ); } _ => { // We re-match here for traits that can have both builtin impls and user written impls. // After the builtin impls we need to also add user written impls, which we do not want to // do in general because just checking if there are any is expensive. match lang_item { Some(LangItem::Coroutine) => { self.assemble_coroutine_candidates(obligation, &mut candidates); } Some(LangItem::Future) => { self.assemble_future_candidates(obligation, &mut candidates); } Some(LangItem::Iterator) => { self.assemble_iterator_candidates(obligation, &mut candidates); } Some(LangItem::FusedIterator) => { self.assemble_fused_iterator_candidates(obligation, &mut candidates); } Some(LangItem::AsyncIterator) => { self.assemble_async_iterator_candidates(obligation, &mut candidates); } Some(LangItem::AsyncFnKindHelper) => { self.assemble_async_fn_kind_helper_candidates( obligation, &mut candidates, ); } Some(LangItem::AsyncFn | LangItem::AsyncFnMut | LangItem::AsyncFnOnce) => { self.assemble_async_closure_candidates(obligation, &mut candidates); } Some(LangItem::Fn | LangItem::FnMut | LangItem::FnOnce) => { self.assemble_closure_candidates(obligation, &mut candidates); self.assemble_fn_pointer_candidates(obligation, &mut candidates); } _ => {} } self.assemble_candidates_from_impls(obligation, &mut candidates); self.assemble_candidates_from_object_ty(obligation, &mut candidates); } } self.assemble_candidates_from_projected_tys(obligation, &mut candidates); self.assemble_candidates_from_caller_bounds(stack, &mut candidates)?; self.assemble_candidates_from_auto_impls(obligation, &mut candidates); } debug!("candidate list size: {}", candidates.vec.len()); Ok(candidates) } #[instrument(level = "debug", skip(self, candidates))] fn assemble_candidates_from_projected_tys( &mut self, obligation: &PolyTraitObligation<'tcx>, candidates: &mut SelectionCandidateSet<'tcx>, ) { // Before we go into the whole placeholder thing, just // quickly check if the self-type is a projection at all. match obligation.predicate.skip_binder().trait_ref.self_ty().kind() { // Excluding IATs and type aliases here as they don't have meaningful item bounds. ty::Alias(ty::Projection | ty::Opaque, _) => {} ty::Infer(ty::TyVar(_)) => { span_bug!( obligation.cause.span, "Self=_ should have been handled by assemble_candidates" ); } _ => return, } self.infcx.probe(|_| { let poly_trait_predicate = self.infcx.resolve_vars_if_possible(obligation.predicate); let placeholder_trait_predicate = self.infcx.enter_forall_and_leak_universe(poly_trait_predicate); // The bounds returned by `item_bounds` may contain duplicates after // normalization, so try to deduplicate when possible to avoid // unnecessary ambiguity. let mut distinct_normalized_bounds = FxHashSet::default(); let _ = self.for_each_item_bound::( placeholder_trait_predicate.self_ty(), |selcx, bound, idx| { let Some(bound) = bound.as_trait_clause() else { return ControlFlow::Continue(()); }; if bound.polarity() != placeholder_trait_predicate.polarity { return ControlFlow::Continue(()); } selcx.infcx.probe(|_| { let bound = util::lazily_elaborate_sizedness_candidate( selcx.infcx, obligation, bound, ); // We checked the polarity already match selcx.match_normalize_trait_ref( obligation, placeholder_trait_predicate.trait_ref, bound.map_bound(|pred| pred.trait_ref), ) { Ok(None) => { candidates.vec.push(ProjectionCandidate(idx)); } Ok(Some(normalized_trait)) if distinct_normalized_bounds.insert(normalized_trait) => { candidates.vec.push(ProjectionCandidate(idx)); } _ => {} } }); ControlFlow::Continue(()) }, // On ambiguity. || candidates.ambiguous = true, ); }); } /// Given an obligation like ``, searches the obligations that the caller /// supplied to find out whether it is listed among them. /// /// Never affects the inference environment. #[instrument(level = "debug", skip(self, stack, candidates))] fn assemble_candidates_from_caller_bounds<'o>( &mut self, stack: &TraitObligationStack<'o, 'tcx>, candidates: &mut SelectionCandidateSet<'tcx>, ) -> Result<(), SelectionError<'tcx>> { debug!(?stack.obligation); let bounds = stack .obligation .param_env .caller_bounds() .iter() .filter_map(|p| p.as_trait_clause()) // Micro-optimization: filter out predicates with different polarities. .filter(|p| p.polarity() == stack.obligation.predicate.polarity()); let drcx = DeepRejectCtxt::relate_rigid_rigid(self.tcx()); let obligation_args = stack.obligation.predicate.skip_binder().trait_ref.args; // Keep only those bounds which may apply, and propagate overflow if it occurs. for bound in bounds { let bound = util::lazily_elaborate_sizedness_candidate(self.infcx, stack.obligation, bound); // Micro-optimization: filter out predicates relating to different traits. if bound.def_id() != stack.obligation.predicate.def_id() { continue; } let bound_trait_ref = bound.map_bound(|t| t.trait_ref); if !drcx.args_may_unify(obligation_args, bound_trait_ref.skip_binder().args) { continue; } let wc = self.where_clause_may_apply(stack, bound_trait_ref)?; if wc.may_apply() { candidates.vec.push(ParamCandidate(bound)); } } Ok(()) } fn assemble_coroutine_candidates( &mut self, obligation: &PolyTraitObligation<'tcx>, candidates: &mut SelectionCandidateSet<'tcx>, ) { // Okay to skip binder because the args on coroutine types never // touch bound regions, they just capture the in-scope // type/region parameters. let self_ty = obligation.self_ty().skip_binder(); match self_ty.kind() { // `async`/`gen` constructs get lowered to a special kind of coroutine that // should *not* `impl Coroutine`. ty::Coroutine(did, ..) if self.tcx().is_general_coroutine(*did) => { debug!(?self_ty, ?obligation, "assemble_coroutine_candidates",); candidates.vec.push(CoroutineCandidate); } ty::Infer(ty::TyVar(_)) => { debug!("assemble_coroutine_candidates: ambiguous self-type"); candidates.ambiguous = true; } _ => {} } } fn assemble_future_candidates( &mut self, obligation: &PolyTraitObligation<'tcx>, candidates: &mut SelectionCandidateSet<'tcx>, ) { let self_ty = obligation.self_ty().skip_binder(); if let ty::Coroutine(did, ..) = self_ty.kind() { // async constructs get lowered to a special kind of coroutine that // should directly `impl Future`. if self.tcx().coroutine_is_async(*did) { debug!(?self_ty, ?obligation, "assemble_future_candidates",); candidates.vec.push(FutureCandidate); } } } fn assemble_iterator_candidates( &mut self, obligation: &PolyTraitObligation<'tcx>, candidates: &mut SelectionCandidateSet<'tcx>, ) { let self_ty = obligation.self_ty().skip_binder(); // gen constructs get lowered to a special kind of coroutine that // should directly `impl Iterator`. if let ty::Coroutine(did, ..) = self_ty.kind() && self.tcx().coroutine_is_gen(*did) { debug!(?self_ty, ?obligation, "assemble_iterator_candidates",); candidates.vec.push(IteratorCandidate); } } fn assemble_fused_iterator_candidates( &mut self, obligation: &PolyTraitObligation<'tcx>, candidates: &mut SelectionCandidateSet<'tcx>, ) { if self.coroutine_is_gen(obligation.self_ty().skip_binder()) { candidates.vec.push(BuiltinCandidate); } } fn assemble_async_iterator_candidates( &mut self, obligation: &PolyTraitObligation<'tcx>, candidates: &mut SelectionCandidateSet<'tcx>, ) { let self_ty = obligation.self_ty().skip_binder(); if let ty::Coroutine(did, args) = *self_ty.kind() { // gen constructs get lowered to a special kind of coroutine that // should directly `impl AsyncIterator`. if self.tcx().coroutine_is_async_gen(did) { debug!(?self_ty, ?obligation, "assemble_iterator_candidates",); // Can only confirm this candidate if we have constrained // the `Yield` type to at least `Poll>`.. let ty::Adt(_poll_def, args) = *args.as_coroutine().yield_ty().kind() else { candidates.ambiguous = true; return; }; let ty::Adt(_option_def, _) = *args.type_at(0).kind() else { candidates.ambiguous = true; return; }; candidates.vec.push(AsyncIteratorCandidate); } } } /// Checks for the artificial impl that the compiler will create for an obligation like `X : /// FnMut<..>` where `X` is a closure type. /// /// Note: the type parameters on a closure candidate are modeled as *output* type /// parameters and hence do not affect whether this trait is a match or not. They will be /// unified during the confirmation step. fn assemble_closure_candidates( &mut self, obligation: &PolyTraitObligation<'tcx>, candidates: &mut SelectionCandidateSet<'tcx>, ) { let kind = self.tcx().fn_trait_kind_from_def_id(obligation.predicate.def_id()).unwrap(); // Okay to skip binder because the args on closure types never // touch bound regions, they just capture the in-scope // type/region parameters let self_ty = obligation.self_ty().skip_binder(); match *self_ty.kind() { ty::Closure(def_id, _) => { let is_const = self.tcx().is_const_fn(def_id); debug!(?kind, ?obligation, "assemble_unboxed_candidates"); match self.infcx.closure_kind(self_ty) { Some(closure_kind) => { debug!(?closure_kind, "assemble_unboxed_candidates"); if closure_kind.extends(kind) { candidates.vec.push(ClosureCandidate { is_const }); } } None => { if kind == ty::ClosureKind::FnOnce { candidates.vec.push(ClosureCandidate { is_const }); } else { candidates.ambiguous = true; } } } } ty::CoroutineClosure(def_id, args) => { let args = args.as_coroutine_closure(); let is_const = self.tcx().is_const_fn(def_id); if let Some(closure_kind) = self.infcx.closure_kind(self_ty) // Ambiguity if upvars haven't been constrained yet && !args.tupled_upvars_ty().is_ty_var() { // A coroutine-closure implements `FnOnce` *always*, since it may // always be called once. It additionally implements `Fn`/`FnMut` // only if it has no upvars referencing the closure-env lifetime, // and if the closure kind permits it. if closure_kind.extends(kind) && !args.has_self_borrows() { candidates.vec.push(ClosureCandidate { is_const }); } else if kind == ty::ClosureKind::FnOnce { candidates.vec.push(ClosureCandidate { is_const }); } } else if kind == ty::ClosureKind::FnOnce { candidates.vec.push(ClosureCandidate { is_const }); } else { // This stays ambiguous until kind+upvars are determined. candidates.ambiguous = true; } } ty::Infer(ty::TyVar(_)) => { debug!("assemble_unboxed_closure_candidates: ambiguous self-type"); candidates.ambiguous = true; } _ => {} } } #[instrument(level = "debug", skip(self, candidates))] fn assemble_async_closure_candidates( &mut self, obligation: &PolyTraitObligation<'tcx>, candidates: &mut SelectionCandidateSet<'tcx>, ) { let goal_kind = self.tcx().async_fn_trait_kind_from_def_id(obligation.predicate.def_id()).unwrap(); debug!("self_ty = {:?}", obligation.self_ty().skip_binder().kind()); match *obligation.self_ty().skip_binder().kind() { ty::CoroutineClosure(def_id, args) => { if let Some(closure_kind) = args.as_coroutine_closure().kind_ty().to_opt_closure_kind() && !closure_kind.extends(goal_kind) { return; } // Make sure this is actually an async closure. let Some(coroutine_kind) = self.tcx().coroutine_kind(self.tcx().coroutine_for_closure(def_id)) else { bug!("coroutine with no kind"); }; debug!(?coroutine_kind); match coroutine_kind { CoroutineKind::Desugared(CoroutineDesugaring::Async, _) => { candidates.vec.push(AsyncClosureCandidate); } _ => (), } } // Closures and fn pointers implement `AsyncFn*` if their return types // implement `Future`, which is checked later. ty::Closure(_, args) => { if let Some(closure_kind) = args.as_closure().kind_ty().to_opt_closure_kind() && !closure_kind.extends(goal_kind) { return; } candidates.vec.push(AsyncClosureCandidate); } // Provide an impl, but only for suitable `fn` pointers. ty::FnPtr(sig_tys, hdr) => { if sig_tys.with(hdr).is_fn_trait_compatible() { candidates.vec.push(AsyncClosureCandidate); } } // Provide an impl for suitable functions, rejecting `#[target_feature]` functions (RFC 2396). ty::FnDef(def_id, _) => { let tcx = self.tcx(); if tcx.fn_sig(def_id).skip_binder().is_fn_trait_compatible() && tcx.codegen_fn_attrs(def_id).target_features.is_empty() { candidates.vec.push(AsyncClosureCandidate); } } _ => {} } } fn assemble_async_fn_kind_helper_candidates( &mut self, obligation: &PolyTraitObligation<'tcx>, candidates: &mut SelectionCandidateSet<'tcx>, ) { let self_ty = obligation.self_ty().skip_binder(); let target_kind_ty = obligation.predicate.skip_binder().trait_ref.args.type_at(1); // `to_opt_closure_kind` is kind of ICEy when it sees non-int types. if !(self_ty.is_integral() || self_ty.is_ty_var()) { return; } if !(target_kind_ty.is_integral() || self_ty.is_ty_var()) { return; } // Check that the self kind extends the goal kind. If it does, // then there's nothing else to check. if let Some(closure_kind) = self_ty.to_opt_closure_kind() && let Some(goal_kind) = target_kind_ty.to_opt_closure_kind() && closure_kind.extends(goal_kind) { candidates.vec.push(AsyncFnKindHelperCandidate); } } /// Implements one of the `Fn()` family for a fn pointer. fn assemble_fn_pointer_candidates( &mut self, obligation: &PolyTraitObligation<'tcx>, candidates: &mut SelectionCandidateSet<'tcx>, ) { // Keep this function in sync with extract_tupled_inputs_and_output_from_callable // until the old solver (and thus this function) is removed. // Okay to skip binder because what we are inspecting doesn't involve bound regions. let self_ty = obligation.self_ty().skip_binder(); match *self_ty.kind() { ty::Infer(ty::TyVar(_)) => { debug!("assemble_fn_pointer_candidates: ambiguous self-type"); candidates.ambiguous = true; // Could wind up being a fn() type. } // Provide an impl, but only for suitable `fn` pointers. ty::FnPtr(sig_tys, hdr) => { if sig_tys.with(hdr).is_fn_trait_compatible() { candidates.vec.push(FnPointerCandidate); } } // Provide an impl for suitable functions, rejecting `#[target_feature]` functions (RFC 2396). ty::FnDef(def_id, _) => { let tcx = self.tcx(); if tcx.fn_sig(def_id).skip_binder().is_fn_trait_compatible() && tcx.codegen_fn_attrs(def_id).target_features.is_empty() { candidates.vec.push(FnPointerCandidate); } } _ => {} } } /// Searches for impls that might apply to `obligation`. #[instrument(level = "debug", skip(self, candidates))] fn assemble_candidates_from_impls( &mut self, obligation: &PolyTraitObligation<'tcx>, candidates: &mut SelectionCandidateSet<'tcx>, ) { let drcx = DeepRejectCtxt::relate_rigid_infer(self.tcx()); let obligation_args = obligation.predicate.skip_binder().trait_ref.args; self.tcx().for_each_relevant_impl( obligation.predicate.def_id(), obligation.predicate.skip_binder().trait_ref.self_ty(), |impl_def_id| { // Before we create the generic parameters and everything, first // consider a "quick reject". This avoids creating more types // and so forth that we need to. let impl_trait_header = self.tcx().impl_trait_header(impl_def_id).unwrap(); if !drcx .args_may_unify(obligation_args, impl_trait_header.trait_ref.skip_binder().args) { return; } // For every `default impl`, there's always a non-default `impl` // that will *also* apply. There's no reason to register a candidate // for this impl, since it is *not* proof that the trait goal holds. if self.tcx().defaultness(impl_def_id).is_default() { return; } if self.reject_fn_ptr_impls( impl_def_id, obligation, impl_trait_header.trait_ref.skip_binder().self_ty(), ) { return; } self.infcx.probe(|_| { if let Ok(_args) = self.match_impl(impl_def_id, impl_trait_header, obligation) { candidates.vec.push(ImplCandidate(impl_def_id)); } }); }, ); } /// The various `impl Trait for T` in libcore are more like builtin impls for all function items /// and function pointers and less like blanket impls. Rejecting them when they can't possibly apply (because /// the obligation's self-type does not implement `FnPtr`) avoids reporting that the self type does not implement /// `FnPtr`, when we wanted to report that it doesn't implement `Trait`. #[instrument(level = "trace", skip(self), ret)] fn reject_fn_ptr_impls( &mut self, impl_def_id: DefId, obligation: &PolyTraitObligation<'tcx>, impl_self_ty: Ty<'tcx>, ) -> bool { // Let `impl Trait for Vec` go through the normal rejection path. if !matches!(impl_self_ty.kind(), ty::Param(..)) { return false; } let Some(fn_ptr_trait) = self.tcx().lang_items().fn_ptr_trait() else { return false; }; for &(predicate, _) in self.tcx().predicates_of(impl_def_id).predicates { let ty::ClauseKind::Trait(pred) = predicate.kind().skip_binder() else { continue }; if fn_ptr_trait != pred.trait_ref.def_id { continue; } trace!(?pred); // Not the bound we're looking for if pred.self_ty() != impl_self_ty { continue; } let self_ty = obligation.self_ty().skip_binder(); match self_ty.kind() { // Fast path to avoid evaluating an obligation that trivially holds. // There may be more bounds, but these are checked by the regular path. ty::FnPtr(..) => return false, // These may potentially implement `FnPtr` ty::Placeholder(..) | ty::Dynamic(_, _) | ty::Alias(_, _) | ty::Infer(_) | ty::Param(..) | ty::Bound(_, _) => {} // These can't possibly implement `FnPtr` as they are concrete types // and not `FnPtr` ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Adt(_, _) | ty::Foreign(_) | ty::Str | ty::Array(_, _) | ty::Pat(_, _) | ty::Slice(_) | ty::RawPtr(_, _) | ty::Ref(_, _, _) | ty::Closure(..) | ty::CoroutineClosure(..) | ty::Coroutine(_, _) | ty::CoroutineWitness(..) | ty::UnsafeBinder(_) | ty::Never | ty::Tuple(_) | ty::Error(_) => return true, // FIXME: Function definitions could actually implement `FnPtr` by // casting the ZST function def to a function pointer. ty::FnDef(_, _) => return true, } // Generic params can implement `FnPtr` if the predicate // holds within its own environment. let obligation = Obligation::new( self.tcx(), obligation.cause.clone(), obligation.param_env, self.tcx().mk_predicate(obligation.predicate.map_bound(|mut pred| { pred.trait_ref = ty::TraitRef::new(self.tcx(), fn_ptr_trait, [pred.trait_ref.self_ty()]); ty::PredicateKind::Clause(ty::ClauseKind::Trait(pred)) })), ); if let Ok(r) = self.evaluate_root_obligation(&obligation) { if !r.may_apply() { return true; } } } false } fn assemble_candidates_from_auto_impls( &mut self, obligation: &PolyTraitObligation<'tcx>, candidates: &mut SelectionCandidateSet<'tcx>, ) { // Okay to skip binder here because the tests we do below do not involve bound regions. let self_ty = obligation.self_ty().skip_binder(); debug!(?self_ty, "assemble_candidates_from_auto_impls"); let def_id = obligation.predicate.def_id(); let mut check_impls = || { // Only consider auto impls if there are no manual impls for the root of `self_ty`. // // For example, we only consider auto candidates for `&i32: Auto` if no explicit impl // for `&SomeType: Auto` exists. Due to E0321 the only crate where impls // for `&SomeType: Auto` can be defined is the crate where `Auto` has been defined. // // Generally, we have to guarantee that for all `SimplifiedType`s the only crate // which may define impls for that type is either the crate defining the type // or the trait. This should be guaranteed by the orphan check. let mut has_impl = false; self.tcx().for_each_relevant_impl(def_id, self_ty, |_| has_impl = true); if !has_impl { candidates.vec.push(AutoImplCandidate) } }; if self.tcx().trait_is_auto(def_id) { match *self_ty.kind() { ty::Dynamic(..) => { // For object types, we don't know what the closed // over types are. This means we conservatively // say nothing; a candidate may be added by // `assemble_candidates_from_object_ty`. } ty::Foreign(..) => { // Since the contents of foreign types is unknown, // we don't add any `..` impl. Default traits could // still be provided by a manual implementation for // this trait and type. // Backward compatibility for default auto traits. // Test: ui/traits/default_auto_traits/extern-types.rs if self.tcx().is_default_trait(def_id) { check_impls() } } ty::Param(..) | ty::Alias(ty::Projection | ty::Inherent | ty::Free, ..) | ty::Placeholder(..) | ty::Bound(..) => { // In these cases, we don't know what the actual // type is. Therefore, we cannot break it down // into its constituent types. So we don't // consider the `..` impl but instead just add no // candidates: this means that typeck will only // succeed if there is another reason to believe // that this obligation holds. That could be a // where-clause or, in the case of an object type, // it could be that the object type lists the // trait (e.g., `Foo+Send : Send`). See // `ui/typeck/typeck-default-trait-impl-send-param.rs` // for an example of a test case that exercises // this path. } ty::Infer(ty::TyVar(_) | ty::IntVar(_) | ty::FloatVar(_)) => { // The auto impl might apply; we don't know. candidates.ambiguous = true; } ty::Coroutine(coroutine_def_id, _) => { if self.tcx().is_lang_item(def_id, LangItem::Unpin) { match self.tcx().coroutine_movability(coroutine_def_id) { hir::Movability::Static => { // Immovable coroutines are never `Unpin`, so // suppress the normal auto-impl candidate for it. } hir::Movability::Movable => { // Movable coroutines are always `Unpin`, so add an // unconditional builtin candidate with no sub-obligations. candidates.vec.push(BuiltinCandidate); } } } else { if self.should_stall_coroutine(coroutine_def_id) { candidates.ambiguous = true; } else { // Coroutines implement all other auto traits normally. candidates.vec.push(AutoImplCandidate); } } } ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => { bug!( "asked to assemble auto trait candidates of unexpected type: {:?}", self_ty ); } ty::Alias(ty::Opaque, alias) => { if candidates.vec.iter().any(|c| matches!(c, ProjectionCandidate(_))) { // We do not generate an auto impl candidate for `impl Trait`s which already // reference our auto trait. // // For example during candidate assembly for `impl Send: Send`, we don't have // to look at the constituent types for this opaque types to figure out that this // trivially holds. // // Note that this is only sound as projection candidates of opaque types // are always applicable for auto traits. } else if let TypingMode::Coherence = self.infcx.typing_mode() { // We do not emit auto trait candidates for opaque types in coherence. // Doing so can result in weird dependency cycles. candidates.ambiguous = true; } else if self.infcx.can_define_opaque_ty(alias.def_id) { // We do not emit auto trait candidates for opaque types in their defining scope, as // we need to know the hidden type first, which we can't reliably know within the defining // scope. candidates.ambiguous = true; } else { candidates.vec.push(AutoImplCandidate) } } ty::CoroutineWitness(..) => { candidates.vec.push(AutoImplCandidate); } ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Str | ty::Array(_, _) | ty::Pat(_, _) | ty::Slice(_) | ty::Adt(..) | ty::RawPtr(_, _) | ty::Ref(..) | ty::FnDef(..) | ty::FnPtr(..) | ty::Closure(..) | ty::CoroutineClosure(..) | ty::Never | ty::Tuple(_) | ty::UnsafeBinder(_) => { // Only consider auto impls of unsafe traits when there are // no unsafe fields. if self.tcx().trait_def(def_id).safety.is_unsafe() && self_ty.has_unsafe_fields() { return; } check_impls(); } ty::Error(_) => { candidates.vec.push(AutoImplCandidate); } } } } /// Searches for impls that might apply to `obligation`. fn assemble_candidates_from_object_ty( &mut self, obligation: &PolyTraitObligation<'tcx>, candidates: &mut SelectionCandidateSet<'tcx>, ) { debug!( self_ty = ?obligation.self_ty().skip_binder(), "assemble_candidates_from_object_ty", ); if !self.tcx().trait_def(obligation.predicate.def_id()).implement_via_object { return; } self.infcx.probe(|_snapshot| { let poly_trait_predicate = self.infcx.resolve_vars_if_possible(obligation.predicate); self.infcx.enter_forall(poly_trait_predicate, |placeholder_trait_predicate| { let self_ty = placeholder_trait_predicate.self_ty(); let principal_trait_ref = match self_ty.kind() { ty::Dynamic(data, ..) => { if data.auto_traits().any(|did| did == obligation.predicate.def_id()) { debug!( "assemble_candidates_from_object_ty: matched builtin bound, \ pushing candidate" ); candidates.vec.push(BuiltinObjectCandidate); return; } if let Some(principal) = data.principal() { principal.with_self_ty(self.tcx(), self_ty) } else { // Only auto trait bounds exist. return; } } ty::Infer(ty::TyVar(_)) => { debug!("assemble_candidates_from_object_ty: ambiguous"); candidates.ambiguous = true; // could wind up being an object type return; } _ => return, }; debug!(?principal_trait_ref, "assemble_candidates_from_object_ty"); // Count only those upcast versions that match the trait-ref // we are looking for. Specifically, do not only check for the // correct trait, but also the correct type parameters. // For example, we may be trying to upcast `Foo` to `Bar`, // but `Foo` is declared as `trait Foo: Bar`. let candidate_supertraits = util::supertraits(self.tcx(), principal_trait_ref) .enumerate() .filter(|&(_, upcast_trait_ref)| { self.infcx.probe(|_| { self.match_normalize_trait_ref( obligation, placeholder_trait_predicate.trait_ref, upcast_trait_ref, ) .is_ok() }) }) .map(|(idx, _)| ObjectCandidate(idx)); candidates.vec.extend(candidate_supertraits); }) }) } /// Searches for unsizing that might apply to `obligation`. fn assemble_candidates_for_unsizing( &mut self, obligation: &PolyTraitObligation<'tcx>, candidates: &mut SelectionCandidateSet<'tcx>, ) { // We currently never consider higher-ranked obligations e.g. // `for<'a> &'a T: Unsize` to be implemented. This is not // because they are a priori invalid, and we could potentially add support // for them later, it's just that there isn't really a strong need for it. // A `T: Unsize` obligation is always used as part of a `T: CoerceUnsize` // impl, and those are generally applied to concrete types. // // That said, one might try to write a fn with a where clause like // for<'a> Foo<'a, T>: Unsize> // where the `'a` is kind of orthogonal to the relevant part of the `Unsize`. // Still, you'd be more likely to write that where clause as // T: Trait // so it seems ok if we (conservatively) fail to accept that `Unsize` // obligation above. Should be possible to extend this in the future. let Some(trait_pred) = obligation.predicate.no_bound_vars() else { // Don't add any candidates if there are bound regions. return; }; let source = trait_pred.self_ty(); let target = trait_pred.trait_ref.args.type_at(1); debug!(?source, ?target, "assemble_candidates_for_unsizing"); match (source.kind(), target.kind()) { // Trait+Kx+'a -> Trait+Ky+'b (upcasts). (&ty::Dynamic(a_data, a_region), &ty::Dynamic(b_data, b_region)) => { // Upcast coercions permit several things: // // 1. Dropping auto traits, e.g., `Foo + Send` to `Foo` // 2. Tightening the region bound, e.g., `Foo + 'a` to `Foo + 'b` if `'a: 'b` // 3. Tightening trait to its super traits, eg. `Foo` to `Bar` if `Foo: Bar` // // Note that neither of the first two of these changes requires any // change at runtime. The third needs to change pointer metadata at runtime. // // We always perform upcasting coercions when we can because of reason // #2 (region bounds). let principal_def_id_a = a_data.principal_def_id(); let principal_def_id_b = b_data.principal_def_id(); if principal_def_id_a == principal_def_id_b || principal_def_id_b.is_none() { // We may upcast to auto traits that are either explicitly listed in // the object type's bounds, or implied by the principal trait ref's // supertraits. let a_auto_traits: FxIndexSet = a_data .auto_traits() .chain(principal_def_id_a.into_iter().flat_map(|principal_def_id| { elaborate::supertrait_def_ids(self.tcx(), principal_def_id) .filter(|def_id| self.tcx().trait_is_auto(*def_id)) })) .collect(); let auto_traits_compatible = b_data .auto_traits() // All of a's auto traits need to be in b's auto traits. .all(|b| a_auto_traits.contains(&b)); if auto_traits_compatible { candidates.vec.push(BuiltinUnsizeCandidate); } } else if principal_def_id_a.is_some() && principal_def_id_b.is_some() { // not casual unsizing, now check whether this is trait upcasting coercion. let principal_a = a_data.principal().unwrap(); let target_trait_did = principal_def_id_b.unwrap(); let source_trait_ref = principal_a.with_self_ty(self.tcx(), source); for (idx, upcast_trait_ref) in util::supertraits(self.tcx(), source_trait_ref).enumerate() { self.infcx.probe(|_| { if upcast_trait_ref.def_id() == target_trait_did && let Ok(nested) = self.match_upcast_principal( obligation, upcast_trait_ref, a_data, b_data, a_region, b_region, ) { if nested.is_none() { candidates.ambiguous = true; } candidates.vec.push(TraitUpcastingUnsizeCandidate(idx)); } }) } } } // `T` -> `Trait` (_, &ty::Dynamic(_, _)) => { candidates.vec.push(BuiltinUnsizeCandidate); } // Ambiguous handling is below `T` -> `Trait`, because inference // variables can still implement `Unsize` and nested // obligations will have the final say (likely deferred). (&ty::Infer(ty::TyVar(_)), _) | (_, &ty::Infer(ty::TyVar(_))) => { debug!("assemble_candidates_for_unsizing: ambiguous"); candidates.ambiguous = true; } // `[T; n]` -> `[T]` (&ty::Array(..), &ty::Slice(_)) => { candidates.vec.push(BuiltinUnsizeCandidate); } // `Struct` -> `Struct` (&ty::Adt(def_id_a, _), &ty::Adt(def_id_b, _)) if def_id_a.is_struct() => { if def_id_a == def_id_b { candidates.vec.push(BuiltinUnsizeCandidate); } } _ => {} }; } #[instrument(level = "debug", skip(self, obligation, candidates))] fn assemble_candidates_for_transmutability( &mut self, obligation: &PolyTraitObligation<'tcx>, candidates: &mut SelectionCandidateSet<'tcx>, ) { if obligation.predicate.has_non_region_param() { return; } if obligation.has_non_region_infer() { candidates.ambiguous = true; return; } candidates.vec.push(TransmutabilityCandidate); } #[instrument(level = "debug", skip(self, obligation, candidates))] fn assemble_candidates_for_trait_alias( &mut self, obligation: &PolyTraitObligation<'tcx>, candidates: &mut SelectionCandidateSet<'tcx>, ) { // Okay to skip binder here because the tests we do below do not involve bound regions. let self_ty = obligation.self_ty().skip_binder(); debug!(?self_ty); let def_id = obligation.predicate.def_id(); if self.tcx().is_trait_alias(def_id) { candidates.vec.push(TraitAliasCandidate); } } /// Assembles `Copy` and `Clone` candidates for built-in types with no libcore-defined /// `Copy` or `Clone` impls. #[instrument(level = "debug", skip(self, candidates))] fn assemble_builtin_copy_clone_candidate( &mut self, self_ty: Ty<'tcx>, candidates: &mut SelectionCandidateSet<'tcx>, ) { match *self_ty.kind() { // These impls are built-in because we cannot express sufficiently // generic impls in libcore. ty::FnDef(..) | ty::FnPtr(..) | ty::Error(_) | ty::Tuple(..) | ty::Pat(..) => { candidates.vec.push(BuiltinCandidate); } // Implementations provided in libcore. ty::Uint(_) | ty::Int(_) | ty::Infer(ty::IntVar(_) | ty::FloatVar(_)) | ty::Bool | ty::Float(_) | ty::Char | ty::RawPtr(..) | ty::Never | ty::Ref(_, _, hir::Mutability::Not) | ty::Array(..) => {} // FIXME(unsafe_binder): Should we conditionally // (i.e. universally) implement copy/clone? ty::UnsafeBinder(_) => {} // Not `Sized`, which is a supertrait of `Copy`/`Clone`. ty::Dynamic(..) | ty::Str | ty::Slice(..) | ty::Foreign(..) => {} // Not `Copy` or `Clone` by design. ty::Ref(_, _, hir::Mutability::Mut) => {} ty::Coroutine(coroutine_def_id, args) => { if self.should_stall_coroutine(coroutine_def_id) { candidates.ambiguous = true; return; } match self.tcx().coroutine_movability(coroutine_def_id) { hir::Movability::Static => {} hir::Movability::Movable => { if self.tcx().features().coroutine_clone() { let resolved_upvars = self.infcx.shallow_resolve(args.as_coroutine().tupled_upvars_ty()); if resolved_upvars.is_ty_var() { // Not yet resolved. candidates.ambiguous = true; } else { candidates.vec.push(BuiltinCandidate); } } } } } ty::Closure(_, args) => { let resolved_upvars = self.infcx.shallow_resolve(args.as_closure().tupled_upvars_ty()); if resolved_upvars.is_ty_var() { // Not yet resolved. candidates.ambiguous = true; } else { candidates.vec.push(BuiltinCandidate); } } ty::CoroutineClosure(_, args) => { let resolved_upvars = self.infcx.shallow_resolve(args.as_coroutine_closure().tupled_upvars_ty()); if resolved_upvars.is_ty_var() { // Not yet resolved. candidates.ambiguous = true; } else { candidates.vec.push(BuiltinCandidate); } } ty::CoroutineWitness(..) => { candidates.vec.push(SizedCandidate); } // Fallback to whatever user-defined impls or param-env clauses exist in this case. ty::Adt(..) | ty::Alias(..) | ty::Param(..) | ty::Placeholder(..) => {} ty::Infer(ty::TyVar(_)) => { candidates.ambiguous = true; } // Only appears when assembling higher-ranked `for T: Clone`. ty::Bound(..) => {} ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => { bug!("asked to assemble builtin bounds of unexpected type: {:?}", self_ty); } } } /// Assembles the `Sized` and `MetaSized` traits which are built-in to the language itself. #[instrument(level = "debug", skip(self, candidates))] fn assemble_builtin_sized_candidate( &mut self, self_ty: Ty<'tcx>, candidates: &mut SelectionCandidateSet<'tcx>, sizedness: SizedTraitKind, ) { match *self_ty.kind() { // Always sized. ty::Infer(ty::IntVar(_) | ty::FloatVar(_)) | ty::Uint(_) | ty::Int(_) | ty::Bool | ty::Float(_) | ty::FnDef(..) | ty::FnPtr(..) | ty::RawPtr(..) | ty::Char | ty::Ref(..) | ty::Array(..) | ty::Closure(..) | ty::CoroutineClosure(..) | ty::Never | ty::Error(_) => { candidates.vec.push(SizedCandidate); } ty::Coroutine(coroutine_def_id, _) => { if self.should_stall_coroutine(coroutine_def_id) { candidates.ambiguous = true; } else { candidates.vec.push(SizedCandidate); } } ty::CoroutineWitness(..) => { candidates.vec.push(SizedCandidate); } // Conditionally `Sized`. ty::Tuple(..) | ty::Pat(..) | ty::Adt(..) | ty::UnsafeBinder(_) => { candidates.vec.push(SizedCandidate); } // `MetaSized` but not `Sized`. ty::Str | ty::Slice(_) | ty::Dynamic(..) => match sizedness { SizedTraitKind::Sized => {} SizedTraitKind::MetaSized => { candidates.vec.push(SizedCandidate); } }, // Not `MetaSized` or `Sized`. ty::Foreign(..) => {} ty::Alias(..) | ty::Param(_) | ty::Placeholder(..) => {} ty::Infer(ty::TyVar(_)) => { candidates.ambiguous = true; } // Only appears when assembling higher-ranked `for T: Sized`. ty::Bound(..) => {} ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => { bug!("asked to assemble builtin bounds of unexpected type: {:?}", self_ty); } } } fn assemble_const_destruct_candidates( &mut self, _obligation: &PolyTraitObligation<'tcx>, candidates: &mut SelectionCandidateSet<'tcx>, ) { candidates.vec.push(BuiltinCandidate); } fn assemble_candidate_for_tuple( &mut self, obligation: &PolyTraitObligation<'tcx>, candidates: &mut SelectionCandidateSet<'tcx>, ) { let self_ty = self.infcx.shallow_resolve(obligation.self_ty().skip_binder()); match self_ty.kind() { ty::Tuple(_) => { candidates.vec.push(BuiltinCandidate); } ty::Infer(ty::TyVar(_)) => { candidates.ambiguous = true; } ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Adt(_, _) | ty::Foreign(_) | ty::Str | ty::Array(_, _) | ty::Slice(_) | ty::RawPtr(_, _) | ty::Ref(_, _, _) | ty::FnDef(_, _) | ty::Pat(_, _) | ty::FnPtr(..) | ty::UnsafeBinder(_) | ty::Dynamic(_, _) | ty::Closure(..) | ty::CoroutineClosure(..) | ty::Coroutine(_, _) | ty::CoroutineWitness(..) | ty::Never | ty::Alias(..) | ty::Param(_) | ty::Bound(_, _) | ty::Error(_) | ty::Infer(_) | ty::Placeholder(_) => {} } } fn assemble_candidates_for_fn_ptr_trait( &mut self, obligation: &PolyTraitObligation<'tcx>, candidates: &mut SelectionCandidateSet<'tcx>, ) { let self_ty = self.infcx.resolve_vars_if_possible(obligation.self_ty()); match self_ty.skip_binder().kind() { ty::FnPtr(..) => candidates.vec.push(BuiltinCandidate), ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Adt(..) | ty::Foreign(..) | ty::Str | ty::Array(..) | ty::Pat(..) | ty::Slice(_) | ty::RawPtr(_, _) | ty::Ref(..) | ty::FnDef(..) | ty::Placeholder(..) | ty::Dynamic(..) | ty::Closure(..) | ty::CoroutineClosure(..) | ty::Coroutine(..) | ty::CoroutineWitness(..) | ty::UnsafeBinder(_) | ty::Never | ty::Tuple(..) | ty::Alias(..) | ty::Param(..) | ty::Bound(..) | ty::Error(_) | ty::Infer( ty::InferTy::IntVar(_) | ty::InferTy::FloatVar(_) | ty::InferTy::FreshIntTy(_) | ty::InferTy::FreshFloatTy(_), ) => {} ty::Infer(ty::InferTy::TyVar(_) | ty::InferTy::FreshTy(_)) => { candidates.ambiguous = true; } } } fn assemble_candidates_for_bikeshed_guaranteed_no_drop_trait( &mut self, obligation: &PolyTraitObligation<'tcx>, candidates: &mut SelectionCandidateSet<'tcx>, ) { match obligation.predicate.self_ty().skip_binder().kind() { ty::Ref(..) | ty::Adt(..) | ty::Tuple(_) | ty::Array(..) | ty::FnDef(..) | ty::FnPtr(..) | ty::Error(_) | ty::Uint(_) | ty::Int(_) | ty::Infer(ty::IntVar(_) | ty::FloatVar(_)) | ty::Bool | ty::Float(_) | ty::Char | ty::RawPtr(..) | ty::Never | ty::Pat(..) | ty::Dynamic(..) | ty::Str | ty::Slice(_) | ty::Foreign(..) | ty::Alias(..) | ty::Param(_) | ty::Placeholder(..) | ty::Closure(..) | ty::CoroutineClosure(..) | ty::Coroutine(..) | ty::UnsafeBinder(_) | ty::CoroutineWitness(..) | ty::Bound(..) => { candidates.vec.push(BikeshedGuaranteedNoDropCandidate); } ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => { candidates.ambiguous = true; } } } }