use std::assert_matches::assert_matches; use rustc_abi::{BackendRepr, FieldsShape, Scalar, Size, TagEncoding, Variants}; use rustc_middle::bug; use rustc_middle::ty::layout::{HasTyCtxt, LayoutCx, TyAndLayout}; /// Enforce some basic invariants on layouts. pub(super) fn layout_sanity_check<'tcx>(cx: &LayoutCx<'tcx>, layout: &TyAndLayout<'tcx>) { let tcx = cx.tcx(); if !layout.size.bytes().is_multiple_of(layout.align.bytes()) { bug!("size is not a multiple of align, in the following layout:\n{layout:#?}"); } if layout.size.bytes() >= tcx.data_layout.obj_size_bound() { bug!("size is too large, in the following layout:\n{layout:#?}"); } if !cfg!(debug_assertions) { // Stop here, the rest is kind of expensive. return; } // Type-level uninhabitedness should always imply ABI uninhabitedness. This can be expensive on // big non-exhaustive types, and is [hard to // fix](https://github.com/rust-lang/rust/issues/141006#issuecomment-2883415000) in general. // Only doing this sanity check when debug assertions are turned on avoids the issue for the // very specific case of #140944. if layout.ty.is_privately_uninhabited(tcx, cx.typing_env) { assert!( layout.is_uninhabited(), "{:?} is type-level uninhabited but not ABI-uninhabited?", layout.ty ); } /// Yields non-ZST fields of the type fn non_zst_fields<'tcx, 'a>( cx: &'a LayoutCx<'tcx>, layout: &'a TyAndLayout<'tcx>, ) -> impl Iterator)> { (0..layout.layout.fields().count()).filter_map(|i| { let field = layout.field(cx, i); // Also checking `align == 1` here leads to test failures in // `layout/zero-sized-array-union.rs`, where a type has a zero-size field with // alignment 4 that still gets ignored during layout computation (which is okay // since other fields already force alignment 4). let zst = field.is_zst(); (!zst).then(|| (layout.fields.offset(i), field)) }) } fn skip_newtypes<'tcx>(cx: &LayoutCx<'tcx>, layout: &TyAndLayout<'tcx>) -> TyAndLayout<'tcx> { if matches!(layout.layout.variants(), Variants::Multiple { .. }) { // Definitely not a newtype of anything. return *layout; } let mut fields = non_zst_fields(cx, layout); let Some(first) = fields.next() else { // No fields here, so this could be a primitive or enum -- either way it's not a newtype around a thing return *layout; }; if fields.next().is_none() { let (offset, first) = first; if offset == Size::ZERO && first.layout.size() == layout.size { // This is a newtype, so keep recursing. // FIXME(RalfJung): I don't think it would be correct to do any checks for // alignment here, so we don't. Is that correct? return skip_newtypes(cx, &first); } } // No more newtypes here. *layout } fn check_layout_abi<'tcx>(cx: &LayoutCx<'tcx>, layout: &TyAndLayout<'tcx>) { // Verify the ABI-mandated alignment and size for scalars. let align = layout.backend_repr.scalar_align(cx); let size = layout.backend_repr.scalar_size(cx); if let Some(align) = align { assert_eq!( layout.layout.align().abi, align, "alignment mismatch between ABI and layout in {layout:#?}" ); } if let Some(size) = size { assert_eq!( layout.layout.size(), size, "size mismatch between ABI and layout in {layout:#?}" ); } // Verify per-ABI invariants match layout.layout.backend_repr() { BackendRepr::Scalar(_) => { // These must always be present for `Scalar` types. let align = align.unwrap(); let size = size.unwrap(); // Check that this matches the underlying field. let inner = skip_newtypes(cx, layout); assert!( matches!(inner.layout.backend_repr(), BackendRepr::Scalar(_)), "`Scalar` type {} is newtype around non-`Scalar` type {}", layout.ty, inner.ty ); match inner.layout.fields() { FieldsShape::Primitive => { // Fine. } FieldsShape::Union(..) => { // FIXME: I guess we could also check something here? Like, look at all fields? return; } FieldsShape::Arbitrary { .. } => { // Should be an enum, the only field is the discriminant. assert!( inner.ty.is_enum(), "`Scalar` layout for non-primitive non-enum type {}", inner.ty ); assert_eq!( inner.layout.fields().count(), 1, "`Scalar` layout for multiple-field type in {inner:#?}", ); let offset = inner.layout.fields().offset(0); let field = inner.field(cx, 0); // The field should be at the right offset, and match the `scalar` layout. assert_eq!( offset, Size::ZERO, "`Scalar` field at non-0 offset in {inner:#?}", ); assert_eq!(field.size, size, "`Scalar` field with bad size in {inner:#?}",); assert_eq!( field.align.abi, align, "`Scalar` field with bad align in {inner:#?}", ); assert!( matches!(field.backend_repr, BackendRepr::Scalar(_)), "`Scalar` field with bad ABI in {inner:#?}", ); } _ => { panic!("`Scalar` layout for non-primitive non-enum type {}", inner.ty); } } } BackendRepr::ScalarPair(scalar1, scalar2) => { // Check that the underlying pair of fields matches. let inner = skip_newtypes(cx, layout); assert!( matches!(inner.layout.backend_repr(), BackendRepr::ScalarPair(..)), "`ScalarPair` type {} is newtype around non-`ScalarPair` type {}", layout.ty, inner.ty ); if matches!(inner.layout.variants(), Variants::Multiple { .. }) { // FIXME: ScalarPair for enums is enormously complicated and it is very hard // to check anything about them. return; } match inner.layout.fields() { FieldsShape::Arbitrary { .. } => { // Checked below. } FieldsShape::Union(..) => { // FIXME: I guess we could also check something here? Like, look at all fields? return; } _ => { panic!("`ScalarPair` layout with unexpected field shape in {inner:#?}"); } } let mut fields = non_zst_fields(cx, &inner); let (offset1, field1) = fields.next().unwrap_or_else(|| { panic!( "`ScalarPair` layout for type with not even one non-ZST field: {inner:#?}" ) }); let (offset2, field2) = fields.next().unwrap_or_else(|| { panic!( "`ScalarPair` layout for type with less than two non-ZST fields: {inner:#?}" ) }); assert_matches!( fields.next(), None, "`ScalarPair` layout for type with at least three non-ZST fields: {inner:#?}" ); // The fields might be in opposite order. let (offset1, field1, offset2, field2) = if offset1 <= offset2 { (offset1, field1, offset2, field2) } else { (offset2, field2, offset1, field1) }; // The fields should be at the right offset, and match the `scalar` layout. let size1 = scalar1.size(cx); let align1 = scalar1.align(cx).abi; let size2 = scalar2.size(cx); let align2 = scalar2.align(cx).abi; assert_eq!( offset1, Size::ZERO, "`ScalarPair` first field at non-0 offset in {inner:#?}", ); assert_eq!( field1.size, size1, "`ScalarPair` first field with bad size in {inner:#?}", ); assert_eq!( field1.align.abi, align1, "`ScalarPair` first field with bad align in {inner:#?}", ); assert_matches!( field1.backend_repr, BackendRepr::Scalar(_), "`ScalarPair` first field with bad ABI in {inner:#?}", ); let field2_offset = size1.align_to(align2); assert_eq!( offset2, field2_offset, "`ScalarPair` second field at bad offset in {inner:#?}", ); assert_eq!( field2.size, size2, "`ScalarPair` second field with bad size in {inner:#?}", ); assert_eq!( field2.align.abi, align2, "`ScalarPair` second field with bad align in {inner:#?}", ); assert_matches!( field2.backend_repr, BackendRepr::Scalar(_), "`ScalarPair` second field with bad ABI in {inner:#?}", ); } BackendRepr::SimdVector { element, count } => { let align = layout.align.abi; let size = layout.size; let element_align = element.align(cx).abi; let element_size = element.size(cx); // Currently, vectors must always be aligned to at least their elements: assert!(align >= element_align); // And the size has to be element * count plus alignment padding, of course assert!(size == (element_size * count).align_to(align)); } BackendRepr::Memory { .. } => {} // Nothing to check. } } check_layout_abi(cx, layout); match &layout.variants { Variants::Empty => { assert!(layout.is_uninhabited()); } Variants::Single { index } => { if let Some(variants) = layout.ty.variant_range(tcx) { assert!(variants.contains(index)); } else { // Types without variants use `0` as dummy variant index. assert!(index.as_u32() == 0); } } Variants::Multiple { variants, tag, tag_encoding, .. } => { if let TagEncoding::Niche { niche_start, untagged_variant, niche_variants } = tag_encoding { let niche_size = tag.size(cx); assert!(*niche_start <= niche_size.unsigned_int_max()); for (idx, variant) in variants.iter_enumerated() { // Ensure all inhabited variants are accounted for. if !variant.is_uninhabited() { assert!(idx == *untagged_variant || niche_variants.contains(&idx)); } // Ensure that for niche encoded tags the discriminant coincides with the variant index. assert_eq!( layout.ty.discriminant_for_variant(tcx, idx).unwrap().val, u128::from(idx.as_u32()), ); } } for variant in variants.iter() { // No nested "multiple". assert_matches!(variant.variants, Variants::Single { .. }); // Variants should have the same or a smaller size as the full thing, // and same for alignment. if variant.size > layout.size { bug!( "Type with size {} bytes has variant with size {} bytes: {layout:#?}", layout.size.bytes(), variant.size.bytes(), ) } if variant.align.abi > layout.align.abi { bug!( "Type with alignment {} bytes has variant with alignment {} bytes: {layout:#?}", layout.align.bytes(), variant.align.bytes(), ) } // Skip empty variants. if variant.size == Size::ZERO || variant.fields.count() == 0 || variant.is_uninhabited() { // These are never actually accessed anyway, so we can skip the coherence check // for them. They also fail that check, since they may have // a different ABI even when the main type is // `Scalar`/`ScalarPair`. (Note that sometimes, variants with fields have size // 0, and sometimes, variants without fields have non-0 size.) continue; } // The top-level ABI and the ABI of the variants should be coherent. let scalar_coherent = |s1: Scalar, s2: Scalar| { s1.size(cx) == s2.size(cx) && s1.align(cx) == s2.align(cx) }; let abi_coherent = match (layout.backend_repr, variant.backend_repr) { (BackendRepr::Scalar(s1), BackendRepr::Scalar(s2)) => scalar_coherent(s1, s2), (BackendRepr::ScalarPair(a1, b1), BackendRepr::ScalarPair(a2, b2)) => { scalar_coherent(a1, a2) && scalar_coherent(b1, b2) } (BackendRepr::Memory { .. }, _) => true, _ => false, }; if !abi_coherent { bug!( "Variant ABI is incompatible with top-level ABI:\nvariant={:#?}\nTop-level: {layout:#?}", variant ); } } } } }