#![unstable(feature = "raw_vec_internals", reason = "unstable const warnings", issue = "none")] #![cfg_attr(test, allow(dead_code))] // Note: This module is also included in the alloctests crate using #[path] to // run the tests. See the comment there for an explanation why this is the case. use core::marker::PhantomData; use core::mem::{ManuallyDrop, MaybeUninit, SizedTypeProperties}; use core::ptr::{self, Alignment, NonNull, Unique}; use core::{cmp, hint}; #[cfg(not(no_global_oom_handling))] use crate::alloc::handle_alloc_error; use crate::alloc::{Allocator, Global, Layout}; use crate::boxed::Box; use crate::collections::TryReserveError; use crate::collections::TryReserveErrorKind::*; #[cfg(test)] mod tests; // One central function responsible for reporting capacity overflows. This'll // ensure that the code generation related to these panics is minimal as there's // only one location which panics rather than a bunch throughout the module. #[cfg(not(no_global_oom_handling))] #[cfg_attr(not(panic = "immediate-abort"), inline(never))] fn capacity_overflow() -> ! { panic!("capacity overflow"); } enum AllocInit { /// The contents of the new memory are uninitialized. Uninitialized, #[cfg(not(no_global_oom_handling))] /// The new memory is guaranteed to be zeroed. Zeroed, } type Cap = core::num::niche_types::UsizeNoHighBit; const ZERO_CAP: Cap = unsafe { Cap::new_unchecked(0) }; /// `Cap(cap)`, except if `T` is a ZST then `Cap::ZERO`. /// /// # Safety: cap must be <= `isize::MAX`. unsafe fn new_cap(cap: usize) -> Cap { if T::IS_ZST { ZERO_CAP } else { unsafe { Cap::new_unchecked(cap) } } } /// A low-level utility for more ergonomically allocating, reallocating, and deallocating /// a buffer of memory on the heap without having to worry about all the corner cases /// involved. This type is excellent for building your own data structures like Vec and VecDeque. /// In particular: /// /// * Produces `Unique::dangling()` on zero-sized types. /// * Produces `Unique::dangling()` on zero-length allocations. /// * Avoids freeing `Unique::dangling()`. /// * Catches all overflows in capacity computations (promotes them to "capacity overflow" panics). /// * Guards against 32-bit systems allocating more than `isize::MAX` bytes. /// * Guards against overflowing your length. /// * Calls `handle_alloc_error` for fallible allocations. /// * Contains a `ptr::Unique` and thus endows the user with all related benefits. /// * Uses the excess returned from the allocator to use the largest available capacity. /// /// This type does not in anyway inspect the memory that it manages. When dropped it *will* /// free its memory, but it *won't* try to drop its contents. It is up to the user of `RawVec` /// to handle the actual things *stored* inside of a `RawVec`. /// /// Note that the excess of a zero-sized types is always infinite, so `capacity()` always returns /// `usize::MAX`. This means that you need to be careful when round-tripping this type with a /// `Box<[T]>`, since `capacity()` won't yield the length. #[allow(missing_debug_implementations)] pub(crate) struct RawVec { inner: RawVecInner, _marker: PhantomData, } /// Like a `RawVec`, but only generic over the allocator, not the type. /// /// As such, all the methods need the layout passed-in as a parameter. /// /// Having this separation reduces the amount of code we need to monomorphize, /// as most operations don't need the actual type, just its layout. #[allow(missing_debug_implementations)] struct RawVecInner { ptr: Unique, /// Never used for ZSTs; it's `capacity()`'s responsibility to return usize::MAX in that case. /// /// # Safety /// /// `cap` must be in the `0..=isize::MAX` range. cap: Cap, alloc: A, } impl RawVec { /// Creates the biggest possible `RawVec` (on the system heap) /// without allocating. If `T` has positive size, then this makes a /// `RawVec` with capacity `0`. If `T` is zero-sized, then it makes a /// `RawVec` with capacity `usize::MAX`. Useful for implementing /// delayed allocation. #[must_use] pub(crate) const fn new() -> Self { Self::new_in(Global) } /// Creates a `RawVec` (on the system heap) with exactly the /// capacity and alignment requirements for a `[T; capacity]`. This is /// equivalent to calling `RawVec::new` when `capacity` is `0` or `T` is /// zero-sized. Note that if `T` is zero-sized this means you will /// *not* get a `RawVec` with the requested capacity. /// /// Non-fallible version of `try_with_capacity` /// /// # Panics /// /// Panics if the requested capacity exceeds `isize::MAX` bytes. /// /// # Aborts /// /// Aborts on OOM. #[cfg(not(any(no_global_oom_handling, test)))] #[must_use] #[inline] pub(crate) fn with_capacity(capacity: usize) -> Self { Self { inner: RawVecInner::with_capacity(capacity, T::LAYOUT), _marker: PhantomData } } /// Like `with_capacity`, but guarantees the buffer is zeroed. #[cfg(not(any(no_global_oom_handling, test)))] #[must_use] #[inline] pub(crate) fn with_capacity_zeroed(capacity: usize) -> Self { Self { inner: RawVecInner::with_capacity_zeroed_in(capacity, Global, T::LAYOUT), _marker: PhantomData, } } } impl RawVecInner { #[cfg(not(any(no_global_oom_handling, test)))] #[must_use] #[inline] fn with_capacity(capacity: usize, elem_layout: Layout) -> Self { match Self::try_allocate_in(capacity, AllocInit::Uninitialized, Global, elem_layout) { Ok(res) => res, Err(err) => handle_error(err), } } } // Tiny Vecs are dumb. Skip to: // - 8 if the element size is 1, because any heap allocator is likely // to round up a request of less than 8 bytes to at least 8 bytes. // - 4 if elements are moderate-sized (<= 1 KiB). // - 1 otherwise, to avoid wasting too much space for very short Vecs. const fn min_non_zero_cap(size: usize) -> usize { if size == 1 { 8 } else if size <= 1024 { 4 } else { 1 } } impl RawVec { #[cfg(not(no_global_oom_handling))] pub(crate) const MIN_NON_ZERO_CAP: usize = min_non_zero_cap(size_of::()); /// Like `new`, but parameterized over the choice of allocator for /// the returned `RawVec`. #[inline] pub(crate) const fn new_in(alloc: A) -> Self { // Check assumption made in `current_memory` const { assert!(T::LAYOUT.size() % T::LAYOUT.align() == 0) }; Self { inner: RawVecInner::new_in(alloc, Alignment::of::()), _marker: PhantomData } } /// Like `with_capacity`, but parameterized over the choice of /// allocator for the returned `RawVec`. #[cfg(not(no_global_oom_handling))] #[inline] pub(crate) fn with_capacity_in(capacity: usize, alloc: A) -> Self { Self { inner: RawVecInner::with_capacity_in(capacity, alloc, T::LAYOUT), _marker: PhantomData, } } /// Like `try_with_capacity`, but parameterized over the choice of /// allocator for the returned `RawVec`. #[inline] pub(crate) fn try_with_capacity_in(capacity: usize, alloc: A) -> Result { match RawVecInner::try_with_capacity_in(capacity, alloc, T::LAYOUT) { Ok(inner) => Ok(Self { inner, _marker: PhantomData }), Err(e) => Err(e), } } /// Like `with_capacity_zeroed`, but parameterized over the choice /// of allocator for the returned `RawVec`. #[cfg(not(no_global_oom_handling))] #[inline] pub(crate) fn with_capacity_zeroed_in(capacity: usize, alloc: A) -> Self { Self { inner: RawVecInner::with_capacity_zeroed_in(capacity, alloc, T::LAYOUT), _marker: PhantomData, } } /// Converts the entire buffer into `Box<[MaybeUninit]>` with the specified `len`. /// /// Note that this will correctly reconstitute any `cap` changes /// that may have been performed. (See description of type for details.) /// /// # Safety /// /// * `len` must be greater than or equal to the most recently requested capacity, and /// * `len` must be less than or equal to `self.capacity()`. /// /// Note, that the requested capacity and `self.capacity()` could differ, as /// an allocator could overallocate and return a greater memory block than requested. pub(crate) unsafe fn into_box(self, len: usize) -> Box<[MaybeUninit], A> { // Sanity-check one half of the safety requirement (we cannot check the other half). debug_assert!( len <= self.capacity(), "`len` must be smaller than or equal to `self.capacity()`" ); let me = ManuallyDrop::new(self); unsafe { let slice = ptr::slice_from_raw_parts_mut(me.ptr() as *mut MaybeUninit, len); Box::from_raw_in(slice, ptr::read(&me.inner.alloc)) } } /// Reconstitutes a `RawVec` from a pointer, capacity, and allocator. /// /// # Safety /// /// The `ptr` must be allocated (via the given allocator `alloc`), and with the given /// `capacity`. /// The `capacity` cannot exceed `isize::MAX` for sized types. (only a concern on 32-bit /// systems). For ZSTs capacity is ignored. /// If the `ptr` and `capacity` come from a `RawVec` created via `alloc`, then this is /// guaranteed. #[inline] pub(crate) unsafe fn from_raw_parts_in(ptr: *mut T, capacity: usize, alloc: A) -> Self { // SAFETY: Precondition passed to the caller unsafe { let ptr = ptr.cast(); let capacity = new_cap::(capacity); Self { inner: RawVecInner::from_raw_parts_in(ptr, capacity, alloc), _marker: PhantomData, } } } /// A convenience method for hoisting the non-null precondition out of [`RawVec::from_raw_parts_in`]. /// /// # Safety /// /// See [`RawVec::from_raw_parts_in`]. #[inline] pub(crate) unsafe fn from_nonnull_in(ptr: NonNull, capacity: usize, alloc: A) -> Self { // SAFETY: Precondition passed to the caller unsafe { let ptr = ptr.cast(); let capacity = new_cap::(capacity); Self { inner: RawVecInner::from_nonnull_in(ptr, capacity, alloc), _marker: PhantomData } } } /// Gets a raw pointer to the start of the allocation. Note that this is /// `Unique::dangling()` if `capacity == 0` or `T` is zero-sized. In the former case, you must /// be careful. #[inline] pub(crate) const fn ptr(&self) -> *mut T { self.inner.ptr() } #[inline] pub(crate) const fn non_null(&self) -> NonNull { self.inner.non_null() } /// Gets the capacity of the allocation. /// /// This will always be `usize::MAX` if `T` is zero-sized. #[inline] pub(crate) const fn capacity(&self) -> usize { self.inner.capacity(size_of::()) } /// Returns a shared reference to the allocator backing this `RawVec`. #[inline] pub(crate) fn allocator(&self) -> &A { self.inner.allocator() } /// Ensures that the buffer contains at least enough space to hold `len + /// additional` elements. If it doesn't already have enough capacity, will /// reallocate enough space plus comfortable slack space to get amortized /// *O*(1) behavior. Will limit this behavior if it would needlessly cause /// itself to panic. /// /// If `len` exceeds `self.capacity()`, this may fail to actually allocate /// the requested space. This is not really unsafe, but the unsafe /// code *you* write that relies on the behavior of this function may break. /// /// This is ideal for implementing a bulk-push operation like `extend`. /// /// # Panics /// /// Panics if the new capacity exceeds `isize::MAX` _bytes_. /// /// # Aborts /// /// Aborts on OOM. #[cfg(not(no_global_oom_handling))] #[inline] pub(crate) fn reserve(&mut self, len: usize, additional: usize) { // SAFETY: All calls on self.inner pass T::LAYOUT as the elem_layout unsafe { self.inner.reserve(len, additional, T::LAYOUT) } } /// A specialized version of `self.reserve(len, 1)` which requires the /// caller to ensure `len == self.capacity()`. #[cfg(not(no_global_oom_handling))] #[inline(never)] pub(crate) fn grow_one(&mut self) { // SAFETY: All calls on self.inner pass T::LAYOUT as the elem_layout unsafe { self.inner.grow_one(T::LAYOUT) } } /// The same as `reserve`, but returns on errors instead of panicking or aborting. pub(crate) fn try_reserve( &mut self, len: usize, additional: usize, ) -> Result<(), TryReserveError> { // SAFETY: All calls on self.inner pass T::LAYOUT as the elem_layout unsafe { self.inner.try_reserve(len, additional, T::LAYOUT) } } /// Ensures that the buffer contains at least enough space to hold `len + /// additional` elements. If it doesn't already, will reallocate the /// minimum possible amount of memory necessary. Generally this will be /// exactly the amount of memory necessary, but in principle the allocator /// is free to give back more than we asked for. /// /// If `len` exceeds `self.capacity()`, this may fail to actually allocate /// the requested space. This is not really unsafe, but the unsafe code /// *you* write that relies on the behavior of this function may break. /// /// # Panics /// /// Panics if the new capacity exceeds `isize::MAX` _bytes_. /// /// # Aborts /// /// Aborts on OOM. #[cfg(not(no_global_oom_handling))] pub(crate) fn reserve_exact(&mut self, len: usize, additional: usize) { // SAFETY: All calls on self.inner pass T::LAYOUT as the elem_layout unsafe { self.inner.reserve_exact(len, additional, T::LAYOUT) } } /// The same as `reserve_exact`, but returns on errors instead of panicking or aborting. pub(crate) fn try_reserve_exact( &mut self, len: usize, additional: usize, ) -> Result<(), TryReserveError> { // SAFETY: All calls on self.inner pass T::LAYOUT as the elem_layout unsafe { self.inner.try_reserve_exact(len, additional, T::LAYOUT) } } /// Shrinks the buffer down to the specified capacity. If the given amount /// is 0, actually completely deallocates. /// /// # Panics /// /// Panics if the given amount is *larger* than the current capacity. /// /// # Aborts /// /// Aborts on OOM. #[cfg(not(no_global_oom_handling))] #[inline] pub(crate) fn shrink_to_fit(&mut self, cap: usize) { // SAFETY: All calls on self.inner pass T::LAYOUT as the elem_layout unsafe { self.inner.shrink_to_fit(cap, T::LAYOUT) } } } unsafe impl<#[may_dangle] T, A: Allocator> Drop for RawVec { /// Frees the memory owned by the `RawVec` *without* trying to drop its contents. fn drop(&mut self) { // SAFETY: We are in a Drop impl, self.inner will not be used again. unsafe { self.inner.deallocate(T::LAYOUT) } } } impl RawVecInner { #[inline] const fn new_in(alloc: A, align: Alignment) -> Self { let ptr = Unique::from_non_null(NonNull::without_provenance(align.as_nonzero())); // `cap: 0` means "unallocated". zero-sized types are ignored. Self { ptr, cap: ZERO_CAP, alloc } } #[cfg(not(no_global_oom_handling))] #[inline] fn with_capacity_in(capacity: usize, alloc: A, elem_layout: Layout) -> Self { match Self::try_allocate_in(capacity, AllocInit::Uninitialized, alloc, elem_layout) { Ok(this) => { unsafe { // Make it more obvious that a subsequent Vec::reserve(capacity) will not allocate. hint::assert_unchecked(!this.needs_to_grow(0, capacity, elem_layout)); } this } Err(err) => handle_error(err), } } #[inline] fn try_with_capacity_in( capacity: usize, alloc: A, elem_layout: Layout, ) -> Result { Self::try_allocate_in(capacity, AllocInit::Uninitialized, alloc, elem_layout) } #[cfg(not(no_global_oom_handling))] #[inline] fn with_capacity_zeroed_in(capacity: usize, alloc: A, elem_layout: Layout) -> Self { match Self::try_allocate_in(capacity, AllocInit::Zeroed, alloc, elem_layout) { Ok(res) => res, Err(err) => handle_error(err), } } fn try_allocate_in( capacity: usize, init: AllocInit, alloc: A, elem_layout: Layout, ) -> Result { // We avoid `unwrap_or_else` here because it bloats the amount of // LLVM IR generated. let layout = match layout_array(capacity, elem_layout) { Ok(layout) => layout, Err(_) => return Err(CapacityOverflow.into()), }; // Don't allocate here because `Drop` will not deallocate when `capacity` is 0. if layout.size() == 0 { return Ok(Self::new_in(alloc, elem_layout.alignment())); } let result = match init { AllocInit::Uninitialized => alloc.allocate(layout), #[cfg(not(no_global_oom_handling))] AllocInit::Zeroed => alloc.allocate_zeroed(layout), }; let ptr = match result { Ok(ptr) => ptr, Err(_) => return Err(AllocError { layout, non_exhaustive: () }.into()), }; // Allocators currently return a `NonNull<[u8]>` whose length // matches the size requested. If that ever changes, the capacity // here should change to `ptr.len() / size_of::()`. Ok(Self { ptr: Unique::from(ptr.cast()), cap: unsafe { Cap::new_unchecked(capacity) }, alloc, }) } #[inline] unsafe fn from_raw_parts_in(ptr: *mut u8, cap: Cap, alloc: A) -> Self { Self { ptr: unsafe { Unique::new_unchecked(ptr) }, cap, alloc } } #[inline] unsafe fn from_nonnull_in(ptr: NonNull, cap: Cap, alloc: A) -> Self { Self { ptr: Unique::from(ptr), cap, alloc } } #[inline] const fn ptr(&self) -> *mut T { self.non_null::().as_ptr() } #[inline] const fn non_null(&self) -> NonNull { self.ptr.cast().as_non_null_ptr() } #[inline] const fn capacity(&self, elem_size: usize) -> usize { if elem_size == 0 { usize::MAX } else { self.cap.as_inner() } } #[inline] fn allocator(&self) -> &A { &self.alloc } /// # Safety /// - `elem_layout` must be valid for `self`, i.e. it must be the same `elem_layout` used to /// initially construct `self` /// - `elem_layout`'s size must be a multiple of its alignment #[inline] unsafe fn current_memory(&self, elem_layout: Layout) -> Option<(NonNull, Layout)> { if elem_layout.size() == 0 || self.cap.as_inner() == 0 { None } else { // We could use Layout::array here which ensures the absence of isize and usize overflows // and could hypothetically handle differences between stride and size, but this memory // has already been allocated so we know it can't overflow and currently Rust does not // support such types. So we can do better by skipping some checks and avoid an unwrap. unsafe { let alloc_size = elem_layout.size().unchecked_mul(self.cap.as_inner()); let layout = Layout::from_size_align_unchecked(alloc_size, elem_layout.align()); Some((self.ptr.into(), layout)) } } } /// # Safety /// - `elem_layout` must be valid for `self`, i.e. it must be the same `elem_layout` used to /// initially construct `self` /// - `elem_layout`'s size must be a multiple of its alignment #[cfg(not(no_global_oom_handling))] #[inline] unsafe fn reserve(&mut self, len: usize, additional: usize, elem_layout: Layout) { // Callers expect this function to be very cheap when there is already sufficient capacity. // Therefore, we move all the resizing and error-handling logic from grow_amortized and // handle_reserve behind a call, while making sure that this function is likely to be // inlined as just a comparison and a call if the comparison fails. #[cold] unsafe fn do_reserve_and_handle( slf: &mut RawVecInner, len: usize, additional: usize, elem_layout: Layout, ) { // SAFETY: Precondition passed to caller if let Err(err) = unsafe { slf.grow_amortized(len, additional, elem_layout) } { handle_error(err); } } if self.needs_to_grow(len, additional, elem_layout) { unsafe { do_reserve_and_handle(self, len, additional, elem_layout); } } } /// # Safety /// - `elem_layout` must be valid for `self`, i.e. it must be the same `elem_layout` used to /// initially construct `self` /// - `elem_layout`'s size must be a multiple of its alignment #[cfg(not(no_global_oom_handling))] #[inline] unsafe fn grow_one(&mut self, elem_layout: Layout) { // SAFETY: Precondition passed to caller if let Err(err) = unsafe { self.grow_amortized(self.cap.as_inner(), 1, elem_layout) } { handle_error(err); } } /// # Safety /// - `elem_layout` must be valid for `self`, i.e. it must be the same `elem_layout` used to /// initially construct `self` /// - `elem_layout`'s size must be a multiple of its alignment unsafe fn try_reserve( &mut self, len: usize, additional: usize, elem_layout: Layout, ) -> Result<(), TryReserveError> { if self.needs_to_grow(len, additional, elem_layout) { // SAFETY: Precondition passed to caller unsafe { self.grow_amortized(len, additional, elem_layout)?; } } unsafe { // Inform the optimizer that the reservation has succeeded or wasn't needed hint::assert_unchecked(!self.needs_to_grow(len, additional, elem_layout)); } Ok(()) } /// # Safety /// - `elem_layout` must be valid for `self`, i.e. it must be the same `elem_layout` used to /// initially construct `self` /// - `elem_layout`'s size must be a multiple of its alignment #[cfg(not(no_global_oom_handling))] unsafe fn reserve_exact(&mut self, len: usize, additional: usize, elem_layout: Layout) { // SAFETY: Precondition passed to caller if let Err(err) = unsafe { self.try_reserve_exact(len, additional, elem_layout) } { handle_error(err); } } /// # Safety /// - `elem_layout` must be valid for `self`, i.e. it must be the same `elem_layout` used to /// initially construct `self` /// - `elem_layout`'s size must be a multiple of its alignment unsafe fn try_reserve_exact( &mut self, len: usize, additional: usize, elem_layout: Layout, ) -> Result<(), TryReserveError> { if self.needs_to_grow(len, additional, elem_layout) { // SAFETY: Precondition passed to caller unsafe { self.grow_exact(len, additional, elem_layout)?; } } unsafe { // Inform the optimizer that the reservation has succeeded or wasn't needed hint::assert_unchecked(!self.needs_to_grow(len, additional, elem_layout)); } Ok(()) } /// # Safety /// - `elem_layout` must be valid for `self`, i.e. it must be the same `elem_layout` used to /// initially construct `self` /// - `elem_layout`'s size must be a multiple of its alignment /// - `cap` must be less than or equal to `self.capacity(elem_layout.size())` #[cfg(not(no_global_oom_handling))] #[inline] unsafe fn shrink_to_fit(&mut self, cap: usize, elem_layout: Layout) { if let Err(err) = unsafe { self.shrink(cap, elem_layout) } { handle_error(err); } } #[inline] fn needs_to_grow(&self, len: usize, additional: usize, elem_layout: Layout) -> bool { additional > self.capacity(elem_layout.size()).wrapping_sub(len) } #[inline] unsafe fn set_ptr_and_cap(&mut self, ptr: NonNull<[u8]>, cap: usize) { // Allocators currently return a `NonNull<[u8]>` whose length matches // the size requested. If that ever changes, the capacity here should // change to `ptr.len() / size_of::()`. self.ptr = Unique::from(ptr.cast()); self.cap = unsafe { Cap::new_unchecked(cap) }; } /// # Safety /// - `elem_layout` must be valid for `self`, i.e. it must be the same `elem_layout` used to /// initially construct `self` /// - `elem_layout`'s size must be a multiple of its alignment /// - The sum of `len` and `additional` must be greater than or equal to /// `self.capacity(elem_layout.size())` unsafe fn grow_amortized( &mut self, len: usize, additional: usize, elem_layout: Layout, ) -> Result<(), TryReserveError> { // This is ensured by the calling contexts. debug_assert!(additional > 0); if elem_layout.size() == 0 { // Since we return a capacity of `usize::MAX` when `elem_size` is // 0, getting to here necessarily means the `RawVec` is overfull. return Err(CapacityOverflow.into()); } // Nothing we can really do about these checks, sadly. let required_cap = len.checked_add(additional).ok_or(CapacityOverflow)?; // This guarantees exponential growth. The doubling cannot overflow // because `cap <= isize::MAX` and the type of `cap` is `usize`. let cap = cmp::max(self.cap.as_inner() * 2, required_cap); let cap = cmp::max(min_non_zero_cap(elem_layout.size()), cap); let new_layout = layout_array(cap, elem_layout)?; // SAFETY: // - For the `current_memory` call: Precondition passed to caller // - For the `finish_grow` call: Precondition passed to caller // + `current_memory` does the right thing let ptr = unsafe { finish_grow(new_layout, self.current_memory(elem_layout), &mut self.alloc)? }; // SAFETY: layout_array would have resulted in a capacity overflow if we tried to allocate more than `isize::MAX` items unsafe { self.set_ptr_and_cap(ptr, cap) }; Ok(()) } /// # Safety /// - `elem_layout` must be valid for `self`, i.e. it must be the same `elem_layout` used to /// initially construct `self` /// - `elem_layout`'s size must be a multiple of its alignment /// - The sum of `len` and `additional` must be greater than or equal to /// `self.capacity(elem_layout.size())` unsafe fn grow_exact( &mut self, len: usize, additional: usize, elem_layout: Layout, ) -> Result<(), TryReserveError> { if elem_layout.size() == 0 { // Since we return a capacity of `usize::MAX` when the type size is // 0, getting to here necessarily means the `RawVec` is overfull. return Err(CapacityOverflow.into()); } let cap = len.checked_add(additional).ok_or(CapacityOverflow)?; let new_layout = layout_array(cap, elem_layout)?; // SAFETY: // - For the `current_memory` call: Precondition passed to caller // - For the `finish_grow` call: Precondition passed to caller // + `current_memory` does the right thing let ptr = unsafe { finish_grow(new_layout, self.current_memory(elem_layout), &mut self.alloc)? }; // SAFETY: layout_array would have resulted in a capacity overflow if we tried to allocate more than `isize::MAX` items unsafe { self.set_ptr_and_cap(ptr, cap); } Ok(()) } /// # Safety /// - `elem_layout` must be valid for `self`, i.e. it must be the same `elem_layout` used to /// initially construct `self` /// - `elem_layout`'s size must be a multiple of its alignment /// - `cap` must be less than or equal to `self.capacity(elem_layout.size())` #[cfg(not(no_global_oom_handling))] #[inline] unsafe fn shrink(&mut self, cap: usize, elem_layout: Layout) -> Result<(), TryReserveError> { assert!(cap <= self.capacity(elem_layout.size()), "Tried to shrink to a larger capacity"); // SAFETY: Just checked this isn't trying to grow unsafe { self.shrink_unchecked(cap, elem_layout) } } /// `shrink`, but without the capacity check. /// /// This is split out so that `shrink` can inline the check, since it /// optimizes out in things like `shrink_to_fit`, without needing to /// also inline all this code, as doing that ends up failing the /// `vec-shrink-panic` codegen test when `shrink_to_fit` ends up being too /// big for LLVM to be willing to inline. /// /// # Safety /// `cap <= self.capacity()` #[cfg(not(no_global_oom_handling))] unsafe fn shrink_unchecked( &mut self, cap: usize, elem_layout: Layout, ) -> Result<(), TryReserveError> { // SAFETY: Precondition passed to caller let (ptr, layout) = if let Some(mem) = unsafe { self.current_memory(elem_layout) } { mem } else { return Ok(()); }; // If shrinking to 0, deallocate the buffer. We don't reach this point // for the T::IS_ZST case since current_memory() will have returned // None. if cap == 0 { unsafe { self.alloc.deallocate(ptr, layout) }; self.ptr = unsafe { Unique::new_unchecked(ptr::without_provenance_mut(elem_layout.align())) }; self.cap = ZERO_CAP; } else { let ptr = unsafe { // Layout cannot overflow here because it would have // overflowed earlier when capacity was larger. let new_size = elem_layout.size().unchecked_mul(cap); let new_layout = Layout::from_size_align_unchecked(new_size, layout.align()); self.alloc .shrink(ptr, layout, new_layout) .map_err(|_| AllocError { layout: new_layout, non_exhaustive: () })? }; // SAFETY: if the allocation is valid, then the capacity is too unsafe { self.set_ptr_and_cap(ptr, cap); } } Ok(()) } /// # Safety /// /// This function deallocates the owned allocation, but does not update `ptr` or `cap` to /// prevent double-free or use-after-free. Essentially, do not do anything with the caller /// after this function returns. /// Ideally this function would take `self` by move, but it cannot because it exists to be /// called from a `Drop` impl. unsafe fn deallocate(&mut self, elem_layout: Layout) { // SAFETY: Precondition passed to caller if let Some((ptr, layout)) = unsafe { self.current_memory(elem_layout) } { unsafe { self.alloc.deallocate(ptr, layout); } } } } /// # Safety /// If `current_memory` matches `Some((ptr, old_layout))`: /// - `ptr` must denote a block of memory *currently allocated* via `alloc` /// - `old_layout` must *fit* that block of memory /// - `new_layout` must have the same alignment as `old_layout` /// - `new_layout.size()` must be greater than or equal to `old_layout.size()` /// If `current_memory` is `None`, this function is safe. // not marked inline(never) since we want optimizers to be able to observe the specifics of this // function, see tests/codegen-llvm/vec-reserve-extend.rs. #[cold] unsafe fn finish_grow( new_layout: Layout, current_memory: Option<(NonNull, Layout)>, alloc: &mut A, ) -> Result, TryReserveError> where A: Allocator, { let memory = if let Some((ptr, old_layout)) = current_memory { debug_assert_eq!(old_layout.align(), new_layout.align()); unsafe { // The allocator checks for alignment equality hint::assert_unchecked(old_layout.align() == new_layout.align()); alloc.grow(ptr, old_layout, new_layout) } } else { alloc.allocate(new_layout) }; memory.map_err(|_| AllocError { layout: new_layout, non_exhaustive: () }.into()) } // Central function for reserve error handling. #[cfg(not(no_global_oom_handling))] #[cold] #[optimize(size)] fn handle_error(e: TryReserveError) -> ! { match e.kind() { CapacityOverflow => capacity_overflow(), AllocError { layout, .. } => handle_alloc_error(layout), } } #[inline] fn layout_array(cap: usize, elem_layout: Layout) -> Result { elem_layout.repeat(cap).map(|(layout, _pad)| layout).map_err(|_| CapacityOverflow.into()) }