//! An IEEE-compliant 8-bit float type for testing purposes. use std::cmp::{self, Ordering}; use std::{fmt, ops}; use crate::Float; /// Sometimes verifying float logic is easiest when all values can quickly be checked exhaustively /// or by hand. /// /// IEEE-754 compliant type that includes a 1 bit sign, 4 bit exponent, and 3 bit significand. /// Bias is -7. /// /// Based on . #[derive(Clone, Copy)] #[repr(transparent)] #[allow(non_camel_case_types)] pub struct f8(u8); impl Float for f8 { type Int = u8; type SignedInt = i8; const ZERO: Self = Self(0b0_0000_000); const NEG_ZERO: Self = Self(0b1_0000_000); const ONE: Self = Self(0b0_0111_000); const NEG_ONE: Self = Self(0b1_0111_000); const MAX: Self = Self(0b0_1110_111); const MIN: Self = Self(0b1_1110_111); const INFINITY: Self = Self(0b0_1111_000); const NEG_INFINITY: Self = Self(0b1_1111_000); const NAN: Self = Self(0b0_1111_100); const NEG_NAN: Self = Self(0b1_1111_100); const MIN_POSITIVE_NORMAL: Self = Self(1 << Self::SIG_BITS); // FIXME: incorrect values const EPSILON: Self = Self::ZERO; const PI: Self = Self::ZERO; const NEG_PI: Self = Self::ZERO; const FRAC_PI_2: Self = Self::ZERO; const BITS: u32 = 8; const SIG_BITS: u32 = 3; const SIGN_MASK: Self::Int = 0b1_0000_000; const SIG_MASK: Self::Int = 0b0_0000_111; const EXP_MASK: Self::Int = 0b0_1111_000; const IMPLICIT_BIT: Self::Int = 0b0_0001_000; fn to_bits(self) -> Self::Int { self.0 } fn to_bits_signed(self) -> Self::SignedInt { self.0 as i8 } fn is_nan(self) -> bool { self.0 & Self::EXP_MASK == Self::EXP_MASK && self.0 & Self::SIG_MASK != 0 } fn is_infinite(self) -> bool { self.0 & Self::EXP_MASK == Self::EXP_MASK && self.0 & Self::SIG_MASK == 0 } fn is_sign_negative(self) -> bool { self.0 & Self::SIGN_MASK != 0 } fn from_bits(a: Self::Int) -> Self { Self(a) } fn abs(self) -> Self { libm::generic::fabs(self) } fn copysign(self, other: Self) -> Self { libm::generic::copysign(self, other) } fn fma(self, _y: Self, _z: Self) -> Self { unimplemented!() } fn normalize(_significand: Self::Int) -> (i32, Self::Int) { unimplemented!() } } impl f8 { pub const ALL_LEN: usize = 240; /// All non-infinite non-NaN values of `f8` pub const ALL: [Self; Self::ALL_LEN] = [ // -m*2^7 Self(0b1_1110_111), // -240 Self(0b1_1110_110), Self(0b1_1110_101), Self(0b1_1110_100), Self(0b1_1110_011), Self(0b1_1110_010), Self(0b1_1110_001), Self(0b1_1110_000), // -128 // -m*2^6 Self(0b1_1101_111), // -120 Self(0b1_1101_110), Self(0b1_1101_101), Self(0b1_1101_100), Self(0b1_1101_011), Self(0b1_1101_010), Self(0b1_1101_001), Self(0b1_1101_000), // -64 // -m*2^5 Self(0b1_1100_111), // -60 Self(0b1_1100_110), Self(0b1_1100_101), Self(0b1_1100_100), Self(0b1_1100_011), Self(0b1_1100_010), Self(0b1_1100_001), Self(0b1_1100_000), // -32 // -m*2^4 Self(0b1_1011_111), // -30 Self(0b1_1011_110), Self(0b1_1011_101), Self(0b1_1011_100), Self(0b1_1011_011), Self(0b1_1011_010), Self(0b1_1011_001), Self(0b1_1011_000), // -16 // -m*2^3 Self(0b1_1010_111), // -15 Self(0b1_1010_110), Self(0b1_1010_101), Self(0b1_1010_100), Self(0b1_1010_011), Self(0b1_1010_010), Self(0b1_1010_001), Self(0b1_1010_000), // -8 // -m*2^2 Self(0b1_1001_111), // -7.5 Self(0b1_1001_110), Self(0b1_1001_101), Self(0b1_1001_100), Self(0b1_1001_011), Self(0b1_1001_010), Self(0b1_1001_001), Self(0b1_1001_000), // -4 // -m*2^1 Self(0b1_1000_111), // -3.75 Self(0b1_1000_110), Self(0b1_1000_101), Self(0b1_1000_100), Self(0b1_1000_011), Self(0b1_1000_010), Self(0b1_1000_001), Self(0b1_1000_000), // -2 // -m*2^0 Self(0b1_0111_111), // -1.875 Self(0b1_0111_110), Self(0b1_0111_101), Self(0b1_0111_100), Self(0b1_0111_011), Self(0b1_0111_010), Self(0b1_0111_001), Self(0b1_0111_000), // -1 // -m*2^-1 Self(0b1_0110_111), // −0.9375 Self(0b1_0110_110), Self(0b1_0110_101), Self(0b1_0110_100), Self(0b1_0110_011), Self(0b1_0110_010), Self(0b1_0110_001), Self(0b1_0110_000), // -0.5 // -m*2^-2 Self(0b1_0101_111), // −0.46875 Self(0b1_0101_110), Self(0b1_0101_101), Self(0b1_0101_100), Self(0b1_0101_011), Self(0b1_0101_010), Self(0b1_0101_001), Self(0b1_0101_000), // -0.25 // -m*2^-3 Self(0b1_0100_111), // −0.234375 Self(0b1_0100_110), Self(0b1_0100_101), Self(0b1_0100_100), Self(0b1_0100_011), Self(0b1_0100_010), Self(0b1_0100_001), Self(0b1_0100_000), // -0.125 // -m*2^-4 Self(0b1_0011_111), // −0.1171875 Self(0b1_0011_110), Self(0b1_0011_101), Self(0b1_0011_100), Self(0b1_0011_011), Self(0b1_0011_010), Self(0b1_0011_001), Self(0b1_0011_000), // −0.0625 // -m*2^-5 Self(0b1_0010_111), // −0.05859375 Self(0b1_0010_110), Self(0b1_0010_101), Self(0b1_0010_100), Self(0b1_0010_011), Self(0b1_0010_010), Self(0b1_0010_001), Self(0b1_0010_000), // −0.03125 // -m*2^-6 Self(0b1_0001_111), // −0.029296875 Self(0b1_0001_110), Self(0b1_0001_101), Self(0b1_0001_100), Self(0b1_0001_011), Self(0b1_0001_010), Self(0b1_0001_001), Self(0b1_0001_000), // −0.015625 // -m*2^-7 subnormal numbers Self(0b1_0000_111), // −0.013671875 Self(0b1_0000_110), Self(0b1_0000_101), Self(0b1_0000_100), Self(0b1_0000_011), Self(0b1_0000_010), Self(0b1_0000_001), // −0.001953125 // Zeroes Self(0b1_0000_000), // -0.0 Self(0b0_0000_000), // 0.0 // m*2^-7 // subnormal numbers Self(0b0_0000_001), Self(0b0_0000_010), Self(0b0_0000_011), Self(0b0_0000_100), Self(0b0_0000_101), Self(0b0_0000_110), Self(0b0_0000_111), // 0.013671875 // m*2^-6 Self(0b0_0001_000), // 0.015625 Self(0b0_0001_001), Self(0b0_0001_010), Self(0b0_0001_011), Self(0b0_0001_100), Self(0b0_0001_101), Self(0b0_0001_110), Self(0b0_0001_111), // 0.029296875 // m*2^-5 Self(0b0_0010_000), // 0.03125 Self(0b0_0010_001), Self(0b0_0010_010), Self(0b0_0010_011), Self(0b0_0010_100), Self(0b0_0010_101), Self(0b0_0010_110), Self(0b0_0010_111), // 0.05859375 // m*2^-4 Self(0b0_0011_000), // 0.0625 Self(0b0_0011_001), Self(0b0_0011_010), Self(0b0_0011_011), Self(0b0_0011_100), Self(0b0_0011_101), Self(0b0_0011_110), Self(0b0_0011_111), // 0.1171875 // m*2^-3 Self(0b0_0100_000), // 0.125 Self(0b0_0100_001), Self(0b0_0100_010), Self(0b0_0100_011), Self(0b0_0100_100), Self(0b0_0100_101), Self(0b0_0100_110), Self(0b0_0100_111), // 0.234375 // m*2^-2 Self(0b0_0101_000), // 0.25 Self(0b0_0101_001), Self(0b0_0101_010), Self(0b0_0101_011), Self(0b0_0101_100), Self(0b0_0101_101), Self(0b0_0101_110), Self(0b0_0101_111), // 0.46875 // m*2^-1 Self(0b0_0110_000), // 0.5 Self(0b0_0110_001), Self(0b0_0110_010), Self(0b0_0110_011), Self(0b0_0110_100), Self(0b0_0110_101), Self(0b0_0110_110), Self(0b0_0110_111), // 0.9375 // m*2^0 Self(0b0_0111_000), // 1 Self(0b0_0111_001), Self(0b0_0111_010), Self(0b0_0111_011), Self(0b0_0111_100), Self(0b0_0111_101), Self(0b0_0111_110), Self(0b0_0111_111), // 1.875 // m*2^1 Self(0b0_1000_000), // 2 Self(0b0_1000_001), Self(0b0_1000_010), Self(0b0_1000_011), Self(0b0_1000_100), Self(0b0_1000_101), Self(0b0_1000_110), Self(0b0_1000_111), // 3.75 // m*2^2 Self(0b0_1001_000), // 4 Self(0b0_1001_001), Self(0b0_1001_010), Self(0b0_1001_011), Self(0b0_1001_100), Self(0b0_1001_101), Self(0b0_1001_110), Self(0b0_1001_111), // 7.5 // m*2^3 Self(0b0_1010_000), // 8 Self(0b0_1010_001), Self(0b0_1010_010), Self(0b0_1010_011), Self(0b0_1010_100), Self(0b0_1010_101), Self(0b0_1010_110), Self(0b0_1010_111), // 15 // m*2^4 Self(0b0_1011_000), // 16 Self(0b0_1011_001), Self(0b0_1011_010), Self(0b0_1011_011), Self(0b0_1011_100), Self(0b0_1011_101), Self(0b0_1011_110), Self(0b0_1011_111), // 30 // m*2^5 Self(0b0_1100_000), // 32 Self(0b0_1100_001), Self(0b0_1100_010), Self(0b0_1100_011), Self(0b0_1100_100), Self(0b0_1100_101), Self(0b0_1100_110), Self(0b0_1100_111), // 60 // m*2^6 Self(0b0_1101_000), // 64 Self(0b0_1101_001), Self(0b0_1101_010), Self(0b0_1101_011), Self(0b0_1101_100), Self(0b0_1101_101), Self(0b0_1101_110), Self(0b0_1101_111), // 120 // m*2^7 Self(0b0_1110_000), // 128 Self(0b0_1110_001), Self(0b0_1110_010), Self(0b0_1110_011), Self(0b0_1110_100), Self(0b0_1110_101), Self(0b0_1110_110), Self(0b0_1110_111), // 240 ]; } impl ops::Add for f8 { type Output = Self; fn add(self, _rhs: Self) -> Self::Output { unimplemented!() } } impl ops::Sub for f8 { type Output = Self; fn sub(self, _rhs: Self) -> Self::Output { unimplemented!() } } impl ops::Mul for f8 { type Output = Self; fn mul(self, _rhs: Self) -> Self::Output { unimplemented!() } } impl ops::Div for f8 { type Output = Self; fn div(self, _rhs: Self) -> Self::Output { unimplemented!() } } impl ops::Neg for f8 { type Output = Self; fn neg(self) -> Self::Output { Self(self.0 ^ Self::SIGN_MASK) } } impl ops::Rem for f8 { type Output = Self; fn rem(self, _rhs: Self) -> Self::Output { unimplemented!() } } impl ops::AddAssign for f8 { fn add_assign(&mut self, _rhs: Self) { unimplemented!() } } impl ops::SubAssign for f8 { fn sub_assign(&mut self, _rhs: Self) { unimplemented!() } } impl ops::MulAssign for f8 { fn mul_assign(&mut self, _rhs: Self) { unimplemented!() } } impl cmp::PartialEq for f8 { fn eq(&self, other: &Self) -> bool { if self.is_nan() || other.is_nan() { false } else if self.abs().to_bits() | other.abs().to_bits() == 0 { true } else { self.0 == other.0 } } } impl cmp::PartialOrd for f8 { fn partial_cmp(&self, other: &Self) -> Option { let inf_rep = f8::EXP_MASK; let a_abs = self.abs().to_bits(); let b_abs = other.abs().to_bits(); // If either a or b is NaN, they are unordered. if a_abs > inf_rep || b_abs > inf_rep { return None; } // If a and b are both zeros, they are equal. if a_abs | b_abs == 0 { return Some(Ordering::Equal); } let a_srep = self.to_bits_signed(); let b_srep = other.to_bits_signed(); let res = a_srep.cmp(&b_srep); if a_srep & b_srep >= 0 { // If at least one of a and b is positive, we get the same result comparing // a and b as signed integers as we would with a fp_ting-point compare. Some(res) } else { // Otherwise, both are negative, so we need to flip the sense of the // comparison to get the correct result. Some(res.reverse()) } } } impl fmt::Display for f8 { fn fmt(&self, _f: &mut fmt::Formatter<'_>) -> fmt::Result { unimplemented!() } } impl fmt::Debug for f8 { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { fmt::Binary::fmt(self, f) } } impl fmt::Binary for f8 { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { let v = self.0; write!( f, "0b{:b}_{:04b}_{:03b}", v >> 7, (v & Self::EXP_MASK) >> Self::SIG_BITS, v & Self::SIG_MASK ) } } impl fmt::LowerHex for f8 { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { self.0.fmt(f) } } pub const fn hf8(s: &str) -> f8 { let Ok(bits) = libm::support::hex_float::parse_hex_exact(s, 8, 3) else { panic!() }; f8(bits as u8) }