/* SPDX-License-Identifier: MIT */ /* origin: musl src/math/fma.c, fmaf.c Ported to generic Rust algorithm in 2025, TG. */ use super::generic; use crate::support::Round; // Placeholder so we can have `fmaf16` in the `Float` trait. #[allow(unused)] #[cfg(f16_enabled)] #[cfg_attr(assert_no_panic, no_panic::no_panic)] pub(crate) fn fmaf16(_x: f16, _y: f16, _z: f16) -> f16 { unimplemented!() } /// Floating multiply add (f32) /// /// Computes `(x*y)+z`, rounded as one ternary operation (i.e. calculated with infinite precision). #[cfg_attr(assert_no_panic, no_panic::no_panic)] pub fn fmaf(x: f32, y: f32, z: f32) -> f32 { select_implementation! { name: fmaf, use_arch: any( all(target_arch = "aarch64", target_feature = "neon"), target_feature = "sse2", ), args: x, y, z, } generic::fma_wide_round(x, y, z, Round::Nearest).val } /// Fused multiply add (f64) /// /// Computes `(x*y)+z`, rounded as one ternary operation (i.e. calculated with infinite precision). #[cfg_attr(assert_no_panic, no_panic::no_panic)] pub fn fma(x: f64, y: f64, z: f64) -> f64 { select_implementation! { name: fma, use_arch: any( all(target_arch = "aarch64", target_feature = "neon"), target_feature = "sse2", ), args: x, y, z, } generic::fma_round(x, y, z, Round::Nearest).val } /// Fused multiply add (f128) /// /// Computes `(x*y)+z`, rounded as one ternary operation (i.e. calculated with infinite precision). #[cfg(f128_enabled)] #[cfg_attr(assert_no_panic, no_panic::no_panic)] pub fn fmaf128(x: f128, y: f128, z: f128) -> f128 { generic::fma_round(x, y, z, Round::Nearest).val } #[cfg(test)] mod tests { use super::*; use crate::support::{CastFrom, CastInto, Float, FpResult, HInt, MinInt, Round, Status}; /// Test the generic `fma_round` algorithm for a given float. fn spec_test(f: impl Fn(F, F, F) -> F) where F: Float, F: CastFrom, F: CastFrom, F::Int: HInt, u32: CastInto, { let x = F::from_bits(F::Int::ONE); let y = F::from_bits(F::Int::ONE); let z = F::ZERO; // 754-2020 says "When the exact result of (a × b) + c is non-zero yet the result of // fusedMultiplyAdd is zero because of rounding, the zero result takes the sign of the // exact result" assert_biteq!(f(x, y, z), F::ZERO); assert_biteq!(f(x, -y, z), F::NEG_ZERO); assert_biteq!(f(-x, y, z), F::NEG_ZERO); assert_biteq!(f(-x, -y, z), F::ZERO); } #[test] fn spec_test_f32() { spec_test::(fmaf); // Also do a small check that the non-widening version works for f32 (this should ideally // get tested some more). spec_test::(|x, y, z| generic::fma_round(x, y, z, Round::Nearest).val); } #[test] fn spec_test_f64() { spec_test::(fma); let expect_underflow = [ ( hf64!("0x1.0p-1070"), hf64!("0x1.0p-1070"), hf64!("0x1.ffffffffffffp-1023"), hf64!("0x0.ffffffffffff8p-1022"), ), ( // FIXME: we raise underflow but this should only be inexact (based on C and // `rustc_apfloat`). hf64!("0x1.0p-1070"), hf64!("0x1.0p-1070"), hf64!("-0x1.0p-1022"), hf64!("-0x1.0p-1022"), ), ]; for (x, y, z, res) in expect_underflow { let FpResult { val, status } = generic::fma_round(x, y, z, Round::Nearest); assert_biteq!(val, res); assert_eq!(status, Status::UNDERFLOW); } } #[test] #[cfg(f128_enabled)] fn spec_test_f128() { spec_test::(fmaf128); } #[test] fn issue_263() { let a = f32::from_bits(1266679807); let b = f32::from_bits(1300234242); let c = f32::from_bits(1115553792); let expected = f32::from_bits(1501560833); assert_eq!(fmaf(a, b, c), expected); } #[test] fn fma_segfault() { // These two inputs cause fma to segfault on release due to overflow: assert_eq!( fma( -0.0000000000000002220446049250313, -0.0000000000000002220446049250313, -0.0000000000000002220446049250313 ), -0.00000000000000022204460492503126, ); let result = fma(-0.992, -0.992, -0.992); //force rounding to storage format on x87 to prevent superious errors. #[cfg(all(target_arch = "x86", not(target_feature = "sse2")))] let result = force_eval!(result); assert_eq!(result, -0.007936000000000007,); } #[test] fn fma_sbb() { assert_eq!( fma(-(1.0 - f64::EPSILON), f64::MIN, f64::MIN), -3991680619069439e277 ); } #[test] fn fma_underflow() { assert_eq!( fma(1.1102230246251565e-16, -9.812526705433188e-305, 1.0894e-320), 0.0, ); } }