/* SPDX-License-Identifier: MIT */ /* origin: musl src/math/ceilf.c */ //! Generic `ceil` algorithm. //! //! Note that this uses the algorithm from musl's `ceilf` rather than `ceil` or `ceill` because //! performance seems to be better (based on icount) and it does not seem to experience rounding //! errors on i386. use crate::support::{Float, FpResult, Int, IntTy, MinInt, Status}; #[inline] pub fn ceil(x: F) -> F { ceil_status(x).val } #[inline] pub fn ceil_status(x: F) -> FpResult { let zero = IntTy::::ZERO; let mut ix = x.to_bits(); let e = x.exp_unbiased(); // If the represented value has no fractional part, no truncation is needed. if e >= F::SIG_BITS as i32 { return FpResult::ok(x); } let status; let res = if e >= 0 { // |x| >= 1.0 let m = F::SIG_MASK >> e.unsigned(); if (ix & m) == zero { // Portion to be masked is already zero; no adjustment needed. return FpResult::ok(x); } // Otherwise, raise an inexact exception. status = Status::INEXACT; if x.is_sign_positive() { ix += m; } ix &= !m; F::from_bits(ix) } else { // |x| < 1.0, raise an inexact exception since truncation will happen (unless x == 0). if ix & F::SIG_MASK == F::Int::ZERO { status = Status::OK; } else { status = Status::INEXACT; } if x.is_sign_negative() { // -1.0 < x <= -0.0; rounding up goes toward -0.0. F::NEG_ZERO } else if ix << 1 != zero { // 0.0 < x < 1.0; rounding up goes toward +1.0. F::ONE } else { // +0.0 remains unchanged x } }; FpResult::new(res, status) } #[cfg(test)] mod tests { use super::*; use crate::support::Hexf; /// Test against https://en.cppreference.com/w/cpp/numeric/math/ceil fn spec_test(cases: &[(F, F, Status)]) { let roundtrip = [ F::ZERO, F::ONE, F::NEG_ONE, F::NEG_ZERO, F::INFINITY, F::NEG_INFINITY, ]; for x in roundtrip { let FpResult { val, status } = ceil_status(x); assert_biteq!(val, x, "{}", Hexf(x)); assert_eq!(status, Status::OK, "{}", Hexf(x)); } for &(x, res, res_stat) in cases { let FpResult { val, status } = ceil_status(x); assert_biteq!(val, res, "{}", Hexf(x)); assert_eq!(status, res_stat, "{}", Hexf(x)); } } /* Skipping f16 / f128 "sanity_check"s due to rejected literal lexing at MSRV */ #[test] #[cfg(f16_enabled)] fn spec_tests_f16() { let cases = [ (0.1, 1.0, Status::INEXACT), (-0.1, -0.0, Status::INEXACT), (0.9, 1.0, Status::INEXACT), (-0.9, -0.0, Status::INEXACT), (1.1, 2.0, Status::INEXACT), (-1.1, -1.0, Status::INEXACT), (1.9, 2.0, Status::INEXACT), (-1.9, -1.0, Status::INEXACT), ]; spec_test::(&cases); } #[test] fn sanity_check_f32() { assert_eq!(ceil(1.1f32), 2.0); assert_eq!(ceil(2.9f32), 3.0); } #[test] fn spec_tests_f32() { let cases = [ (0.1, 1.0, Status::INEXACT), (-0.1, -0.0, Status::INEXACT), (0.9, 1.0, Status::INEXACT), (-0.9, -0.0, Status::INEXACT), (1.1, 2.0, Status::INEXACT), (-1.1, -1.0, Status::INEXACT), (1.9, 2.0, Status::INEXACT), (-1.9, -1.0, Status::INEXACT), ]; spec_test::(&cases); } #[test] fn sanity_check_f64() { assert_eq!(ceil(1.1f64), 2.0); assert_eq!(ceil(2.9f64), 3.0); } #[test] fn spec_tests_f64() { let cases = [ (0.1, 1.0, Status::INEXACT), (-0.1, -0.0, Status::INEXACT), (0.9, 1.0, Status::INEXACT), (-0.9, -0.0, Status::INEXACT), (1.1, 2.0, Status::INEXACT), (-1.1, -1.0, Status::INEXACT), (1.9, 2.0, Status::INEXACT), (-1.9, -1.0, Status::INEXACT), ]; spec_test::(&cases); } #[test] #[cfg(f128_enabled)] fn spec_tests_f128() { let cases = [ (0.1, 1.0, Status::INEXACT), (-0.1, -0.0, Status::INEXACT), (0.9, 1.0, Status::INEXACT), (-0.9, -0.0, Status::INEXACT), (1.1, 2.0, Status::INEXACT), (-1.1, -1.0, Status::INEXACT), (1.9, 2.0, Status::INEXACT), (-1.9, -1.0, Status::INEXACT), ]; spec_test::(&cases); } }