//! Helper code for character escaping. use crate::ascii; use crate::num::NonZero; use crate::ops::Range; const HEX_DIGITS: [ascii::Char; 16] = *b"0123456789abcdef".as_ascii().unwrap(); #[inline] const fn backslash(a: ascii::Char) -> ([ascii::Char; N], Range) { const { assert!(N >= 2) }; let mut output = [ascii::Char::Null; N]; output[0] = ascii::Char::ReverseSolidus; output[1] = a; (output, 0..2) } #[inline] const fn hex_escape(byte: u8) -> ([ascii::Char; N], Range) { const { assert!(N >= 4) }; let mut output = [ascii::Char::Null; N]; let hi = HEX_DIGITS[(byte >> 4) as usize]; let lo = HEX_DIGITS[(byte & 0xf) as usize]; output[0] = ascii::Char::ReverseSolidus; output[1] = ascii::Char::SmallX; output[2] = hi; output[3] = lo; (output, 0..4) } #[inline] const fn verbatim(a: ascii::Char) -> ([ascii::Char; N], Range) { const { assert!(N >= 1) }; let mut output = [ascii::Char::Null; N]; output[0] = a; (output, 0..1) } /// Escapes an ASCII character. /// /// Returns a buffer and the length of the escaped representation. const fn escape_ascii(byte: u8) -> ([ascii::Char; N], Range) { const { assert!(N >= 4) }; #[cfg(feature = "optimize_for_size")] { match byte { b'\t' => backslash(ascii::Char::SmallT), b'\r' => backslash(ascii::Char::SmallR), b'\n' => backslash(ascii::Char::SmallN), b'\\' => backslash(ascii::Char::ReverseSolidus), b'\'' => backslash(ascii::Char::Apostrophe), b'"' => backslash(ascii::Char::QuotationMark), 0x00..=0x1F | 0x7F => hex_escape(byte), _ => match ascii::Char::from_u8(byte) { Some(a) => verbatim(a), None => hex_escape(byte), }, } } #[cfg(not(feature = "optimize_for_size"))] { /// Lookup table helps us determine how to display character. /// /// Since ASCII characters will always be 7 bits, we can exploit this to store the 8th bit to /// indicate whether the result is escaped or unescaped. /// /// We additionally use 0x80 (escaped NUL character) to indicate hex-escaped bytes, since /// escaped NUL will not occur. const LOOKUP: [u8; 256] = { let mut arr = [0; 256]; let mut idx = 0; while idx <= 255 { arr[idx] = match idx as u8 { // use 8th bit to indicate escaped b'\t' => 0x80 | b't', b'\r' => 0x80 | b'r', b'\n' => 0x80 | b'n', b'\\' => 0x80 | b'\\', b'\'' => 0x80 | b'\'', b'"' => 0x80 | b'"', // use NUL to indicate hex-escaped 0x00..=0x1F | 0x7F..=0xFF => 0x80 | b'\0', idx => idx, }; idx += 1; } arr }; let lookup = LOOKUP[byte as usize]; // 8th bit indicates escape let lookup_escaped = lookup & 0x80 != 0; // SAFETY: We explicitly mask out the eighth bit to get a 7-bit ASCII character. let lookup_ascii = unsafe { ascii::Char::from_u8_unchecked(lookup & 0x7F) }; if lookup_escaped { // NUL indicates hex-escaped if matches!(lookup_ascii, ascii::Char::Null) { hex_escape(byte) } else { backslash(lookup_ascii) } } else { verbatim(lookup_ascii) } } } /// Escapes a character `\u{NNNN}` representation. /// /// Returns a buffer and the length of the escaped representation. const fn escape_unicode(c: char) -> ([ascii::Char; N], Range) { const { assert!(N >= 10 && N < u8::MAX as usize) }; let c = c as u32; // OR-ing `1` ensures that for `c == 0` the code computes that // one digit should be printed. let start = (c | 1).leading_zeros() as usize / 4 - 2; let mut output = [ascii::Char::Null; N]; output[3] = HEX_DIGITS[((c >> 20) & 15) as usize]; output[4] = HEX_DIGITS[((c >> 16) & 15) as usize]; output[5] = HEX_DIGITS[((c >> 12) & 15) as usize]; output[6] = HEX_DIGITS[((c >> 8) & 15) as usize]; output[7] = HEX_DIGITS[((c >> 4) & 15) as usize]; output[8] = HEX_DIGITS[((c >> 0) & 15) as usize]; output[9] = ascii::Char::RightCurlyBracket; output[start + 0] = ascii::Char::ReverseSolidus; output[start + 1] = ascii::Char::SmallU; output[start + 2] = ascii::Char::LeftCurlyBracket; (output, (start as u8)..(N as u8)) } /// An iterator over an fixed-size array. /// /// This is essentially equivalent to array’s IntoIter except that indexes are /// limited to u8 to reduce size of the structure. #[derive(Clone, Debug)] pub(crate) struct EscapeIterInner { // The element type ensures this is always ASCII, and thus also valid UTF-8. data: [ascii::Char; N], // Invariant: `alive.start <= alive.end <= N` alive: Range, } impl EscapeIterInner { pub(crate) const fn backslash(c: ascii::Char) -> Self { let (data, range) = backslash(c); Self { data, alive: range } } pub(crate) const fn ascii(c: u8) -> Self { let (data, range) = escape_ascii(c); Self { data, alive: range } } pub(crate) const fn unicode(c: char) -> Self { let (data, range) = escape_unicode(c); Self { data, alive: range } } #[inline] pub(crate) const fn empty() -> Self { Self { data: [ascii::Char::Null; N], alive: 0..0 } } #[inline] pub(crate) fn as_ascii(&self) -> &[ascii::Char] { // SAFETY: `self.alive` is guaranteed to be a valid range for indexing `self.data`. unsafe { self.data.get_unchecked(usize::from(self.alive.start)..usize::from(self.alive.end)) } } #[inline] pub(crate) fn as_str(&self) -> &str { self.as_ascii().as_str() } #[inline] pub(crate) fn len(&self) -> usize { usize::from(self.alive.end - self.alive.start) } pub(crate) fn next(&mut self) -> Option { let i = self.alive.next()?; // SAFETY: `i` is guaranteed to be a valid index for `self.data`. unsafe { Some(self.data.get_unchecked(usize::from(i)).to_u8()) } } pub(crate) fn next_back(&mut self) -> Option { let i = self.alive.next_back()?; // SAFETY: `i` is guaranteed to be a valid index for `self.data`. unsafe { Some(self.data.get_unchecked(usize::from(i)).to_u8()) } } pub(crate) fn advance_by(&mut self, n: usize) -> Result<(), NonZero> { self.alive.advance_by(n) } pub(crate) fn advance_back_by(&mut self, n: usize) -> Result<(), NonZero> { self.alive.advance_back_by(n) } }