//! Helper code for character escaping. use crate::ascii; use crate::fmt::{self, Write}; use crate::marker::PhantomData; use crate::num::NonZero; use crate::ops::Range; const HEX_DIGITS: [ascii::Char; 16] = *b"0123456789abcdef".as_ascii().unwrap(); /// Escapes a character with `\x` representation. /// /// Returns a buffer with the escaped representation and its corresponding range. #[inline] const fn backslash(a: ascii::Char) -> ([ascii::Char; N], Range) { const { assert!(N >= 2) }; let mut output = [ascii::Char::Null; N]; output[0] = ascii::Char::ReverseSolidus; output[1] = a; (output, 0..2) } /// Escapes a character with `\xNN` representation. /// /// Returns a buffer with the escaped representation and its corresponding range. #[inline] const fn hex_escape(byte: u8) -> ([ascii::Char; N], Range) { const { assert!(N >= 4) }; let mut output = [ascii::Char::Null; N]; let hi = HEX_DIGITS[(byte >> 4) as usize]; let lo = HEX_DIGITS[(byte & 0xf) as usize]; output[0] = ascii::Char::ReverseSolidus; output[1] = ascii::Char::SmallX; output[2] = hi; output[3] = lo; (output, 0..4) } /// Returns a buffer with the verbatim character and its corresponding range. #[inline] const fn verbatim(a: ascii::Char) -> ([ascii::Char; N], Range) { const { assert!(N >= 1) }; let mut output = [ascii::Char::Null; N]; output[0] = a; (output, 0..1) } /// Escapes an ASCII character. /// /// Returns a buffer with the escaped representation and its corresponding range. const fn escape_ascii(byte: u8) -> ([ascii::Char; N], Range) { const { assert!(N >= 4) }; #[cfg(feature = "optimize_for_size")] { match byte { b'\t' => backslash(ascii::Char::SmallT), b'\r' => backslash(ascii::Char::SmallR), b'\n' => backslash(ascii::Char::SmallN), b'\\' => backslash(ascii::Char::ReverseSolidus), b'\'' => backslash(ascii::Char::Apostrophe), b'"' => backslash(ascii::Char::QuotationMark), 0x00..=0x1F | 0x7F => hex_escape(byte), _ => match ascii::Char::from_u8(byte) { Some(a) => verbatim(a), None => hex_escape(byte), }, } } #[cfg(not(feature = "optimize_for_size"))] { /// Lookup table helps us determine how to display character. /// /// Since ASCII characters will always be 7 bits, we can exploit this to store the 8th bit to /// indicate whether the result is escaped or unescaped. /// /// We additionally use 0x80 (escaped NUL character) to indicate hex-escaped bytes, since /// escaped NUL will not occur. const LOOKUP: [u8; 256] = { let mut arr = [0; 256]; let mut idx = 0; while idx <= 255 { arr[idx] = match idx as u8 { // use 8th bit to indicate escaped b'\t' => 0x80 | b't', b'\r' => 0x80 | b'r', b'\n' => 0x80 | b'n', b'\\' => 0x80 | b'\\', b'\'' => 0x80 | b'\'', b'"' => 0x80 | b'"', // use NUL to indicate hex-escaped 0x00..=0x1F | 0x7F..=0xFF => 0x80 | b'\0', idx => idx, }; idx += 1; } arr }; let lookup = LOOKUP[byte as usize]; // 8th bit indicates escape let lookup_escaped = lookup & 0x80 != 0; // SAFETY: We explicitly mask out the eighth bit to get a 7-bit ASCII character. let lookup_ascii = unsafe { ascii::Char::from_u8_unchecked(lookup & 0x7F) }; if lookup_escaped { // NUL indicates hex-escaped if matches!(lookup_ascii, ascii::Char::Null) { hex_escape(byte) } else { backslash(lookup_ascii) } } else { verbatim(lookup_ascii) } } } /// Escapes a character with `\u{NNNN}` representation. /// /// Returns a buffer with the escaped representation and its corresponding range. const fn escape_unicode(c: char) -> ([ascii::Char; N], Range) { const { assert!(N >= 10 && N < u8::MAX as usize) }; let c = c as u32; // OR-ing `1` ensures that for `c == 0` the code computes that // one digit should be printed. let start = (c | 1).leading_zeros() as usize / 4 - 2; let mut output = [ascii::Char::Null; N]; output[3] = HEX_DIGITS[((c >> 20) & 15) as usize]; output[4] = HEX_DIGITS[((c >> 16) & 15) as usize]; output[5] = HEX_DIGITS[((c >> 12) & 15) as usize]; output[6] = HEX_DIGITS[((c >> 8) & 15) as usize]; output[7] = HEX_DIGITS[((c >> 4) & 15) as usize]; output[8] = HEX_DIGITS[((c >> 0) & 15) as usize]; output[9] = ascii::Char::RightCurlyBracket; output[start + 0] = ascii::Char::ReverseSolidus; output[start + 1] = ascii::Char::SmallU; output[start + 2] = ascii::Char::LeftCurlyBracket; (output, (start as u8)..(N as u8)) } #[derive(Clone, Copy)] union MaybeEscapedCharacter { pub escape_seq: [ascii::Char; N], pub literal: char, } /// Marker type to indicate that the character is always escaped, /// used to optimize the iterator implementation. #[derive(Clone, Copy)] #[non_exhaustive] pub(crate) struct AlwaysEscaped; /// Marker type to indicate that the character may be escaped, /// used to optimize the iterator implementation. #[derive(Clone, Copy)] #[non_exhaustive] pub(crate) struct MaybeEscaped; /// An iterator over a possibly escaped character. #[derive(Clone)] pub(crate) struct EscapeIterInner { // Invariant: // // If `alive.end <= Self::LITERAL_ESCAPE_START`, `data` must contain // printable ASCII characters in the `alive` range of its `escape_seq` variant. // // If `alive.end > Self::LITERAL_ESCAPE_START`, `data` must contain a // `char` in its `literal` variant, and the `alive` range must have a // length of at most `1`. data: MaybeEscapedCharacter, alive: Range, escaping: PhantomData, } impl EscapeIterInner { const LITERAL_ESCAPE_START: u8 = 128; /// # Safety /// /// `data.escape_seq` must contain an escape sequence in the range given by `alive`. #[inline] const unsafe fn new(data: MaybeEscapedCharacter, alive: Range) -> Self { // Longer escape sequences are not useful given `alive.end` is at most // `Self::LITERAL_ESCAPE_START`. const { assert!(N < Self::LITERAL_ESCAPE_START as usize) }; // Check bounds, which implicitly also checks the invariant // `alive.end <= Self::LITERAL_ESCAPE_START`. debug_assert!(alive.end <= (N + 1) as u8); Self { data, alive, escaping: PhantomData } } pub(crate) const fn backslash(c: ascii::Char) -> Self { let (escape_seq, alive) = backslash(c); // SAFETY: `escape_seq` contains an escape sequence in the range given by `alive`. unsafe { Self::new(MaybeEscapedCharacter { escape_seq }, alive) } } pub(crate) const fn ascii(c: u8) -> Self { let (escape_seq, alive) = escape_ascii(c); // SAFETY: `escape_seq` contains an escape sequence in the range given by `alive`. unsafe { Self::new(MaybeEscapedCharacter { escape_seq }, alive) } } pub(crate) const fn unicode(c: char) -> Self { let (escape_seq, alive) = escape_unicode(c); // SAFETY: `escape_seq` contains an escape sequence in the range given by `alive`. unsafe { Self::new(MaybeEscapedCharacter { escape_seq }, alive) } } #[inline] pub(crate) const fn empty() -> Self { // SAFETY: `0..0` ensures an empty escape sequence. unsafe { Self::new(MaybeEscapedCharacter { escape_seq: [ascii::Char::Null; N] }, 0..0) } } #[inline] pub(crate) fn len(&self) -> usize { usize::from(self.alive.end - self.alive.start) } #[inline] pub(crate) fn advance_by(&mut self, n: usize) -> Result<(), NonZero> { self.alive.advance_by(n) } #[inline] pub(crate) fn advance_back_by(&mut self, n: usize) -> Result<(), NonZero> { self.alive.advance_back_by(n) } /// Returns a `char` if `self.data` contains one in its `literal` variant. #[inline] const fn to_char(&self) -> Option { if self.alive.end > Self::LITERAL_ESCAPE_START { // SAFETY: We just checked that `self.data` contains a `char` in // its `literal` variant. return Some(unsafe { self.data.literal }); } None } /// Returns the printable ASCII characters in the `escape_seq` variant of `self.data` /// as a string. /// /// # Safety /// /// - `self.data` must contain printable ASCII characters in its `escape_seq` variant. /// - `self.alive` must be a valid range for `self.data.escape_seq`. #[inline] unsafe fn to_str_unchecked(&self) -> &str { debug_assert!(self.alive.end <= Self::LITERAL_ESCAPE_START); // SAFETY: The caller guarantees `self.data` contains printable ASCII // characters in its `escape_seq` variant, and `self.alive` is // a valid range for `self.data.escape_seq`. unsafe { self.data .escape_seq .get_unchecked(usize::from(self.alive.start)..usize::from(self.alive.end)) .as_str() } } } impl EscapeIterInner { pub(crate) fn next(&mut self) -> Option { let i = self.alive.next()?; // SAFETY: The `AlwaysEscaped` marker guarantees that `self.data` // contains printable ASCII characters in its `escape_seq` // variant, and `i` is guaranteed to be a valid index for // `self.data.escape_seq`. unsafe { Some(self.data.escape_seq.get_unchecked(usize::from(i)).to_u8()) } } pub(crate) fn next_back(&mut self) -> Option { let i = self.alive.next_back()?; // SAFETY: The `AlwaysEscaped` marker guarantees that `self.data` // contains printable ASCII characters in its `escape_seq` // variant, and `i` is guaranteed to be a valid index for // `self.data.escape_seq`. unsafe { Some(self.data.escape_seq.get_unchecked(usize::from(i)).to_u8()) } } } impl EscapeIterInner { // This is the only way to create any `EscapeIterInner` containing a `char` in // the `literal` variant of its `self.data`, meaning the `AlwaysEscaped` marker // guarantees that `self.data` contains printable ASCII characters in its // `escape_seq` variant. pub(crate) const fn printable(c: char) -> Self { Self { data: MaybeEscapedCharacter { literal: c }, // Uphold the invariant `alive.end > Self::LITERAL_ESCAPE_START`, and ensure // `len` behaves correctly for iterating through one character literal. alive: Self::LITERAL_ESCAPE_START..(Self::LITERAL_ESCAPE_START + 1), escaping: PhantomData, } } pub(crate) fn next(&mut self) -> Option { let i = self.alive.next()?; if let Some(c) = self.to_char() { return Some(c); } // SAFETY: At this point, `self.data` must contain printable ASCII // characters in its `escape_seq` variant, and `i` is // guaranteed to be a valid index for `self.data.escape_seq`. Some(char::from(unsafe { self.data.escape_seq.get_unchecked(usize::from(i)).to_u8() })) } } impl fmt::Display for EscapeIterInner { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { // SAFETY: The `AlwaysEscaped` marker guarantees that `self.data` // contains printable ASCII chars, and `self.alive` is // guaranteed to be a valid range for `self.data`. f.write_str(unsafe { self.to_str_unchecked() }) } } impl fmt::Display for EscapeIterInner { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { if let Some(c) = self.to_char() { return f.write_char(c); } // SAFETY: At this point, `self.data` must contain printable ASCII // characters in its `escape_seq` variant, and `self.alive` // is guaranteed to be a valid range for `self.data`. f.write_str(unsafe { self.to_str_unchecked() }) } } impl fmt::Debug for EscapeIterInner { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_tuple("EscapeIterInner").field(&format_args!("'{}'", self)).finish() } } impl fmt::Debug for EscapeIterInner { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_tuple("EscapeIterInner").field(&format_args!("'{}'", self)).finish() } }