//! Integer and floating-point number formatting use crate::fmt::NumBuffer; use crate::mem::MaybeUninit; use crate::num::fmt as numfmt; use crate::ops::{Div, Rem, Sub}; use crate::{fmt, ptr, slice, str}; #[doc(hidden)] trait DisplayInt: PartialEq + PartialOrd + Div + Rem + Sub + Copy { fn zero() -> Self; fn from_u8(u: u8) -> Self; fn to_u8(&self) -> u8; #[cfg(not(any(target_pointer_width = "64", target_arch = "wasm32")))] fn to_u32(&self) -> u32; fn to_u64(&self) -> u64; fn to_u128(&self) -> u128; } macro_rules! impl_int { ($($t:ident)*) => ( $(impl DisplayInt for $t { fn zero() -> Self { 0 } fn from_u8(u: u8) -> Self { u as Self } fn to_u8(&self) -> u8 { *self as u8 } #[cfg(not(any(target_pointer_width = "64", target_arch = "wasm32")))] fn to_u32(&self) -> u32 { *self as u32 } fn to_u64(&self) -> u64 { *self as u64 } fn to_u128(&self) -> u128 { *self as u128 } })* ) } impl_int! { i8 i16 i32 i64 i128 isize u8 u16 u32 u64 u128 usize } /// A type that represents a specific radix /// /// # Safety /// /// `digit` must return an ASCII character. #[doc(hidden)] unsafe trait GenericRadix: Sized { /// The number of digits. const BASE: u8; /// A radix-specific prefix string. const PREFIX: &'static str; /// Converts an integer to corresponding radix digit. fn digit(x: u8) -> u8; /// Format an integer using the radix using a formatter. fn fmt_int(&self, mut x: T, f: &mut fmt::Formatter<'_>) -> fmt::Result { // The radix can be as low as 2, so we need a buffer of at least 128 // characters for a base 2 number. let zero = T::zero(); let is_nonnegative = x >= zero; let mut buf = [MaybeUninit::::uninit(); 128]; let mut offset = buf.len(); let base = T::from_u8(Self::BASE); if is_nonnegative { // Accumulate each digit of the number from the least significant // to the most significant figure. loop { let n = x % base; // Get the current place value. x = x / base; // Deaccumulate the number. offset -= 1; buf[offset].write(Self::digit(n.to_u8())); // Store the digit in the buffer. if x == zero { // No more digits left to accumulate. break; }; } } else { // Do the same as above, but accounting for two's complement. loop { let n = zero - (x % base); // Get the current place value. x = x / base; // Deaccumulate the number. offset -= 1; buf[offset].write(Self::digit(n.to_u8())); // Store the digit in the buffer. if x == zero { // No more digits left to accumulate. break; }; } } // SAFETY: Starting from `offset`, all elements of the slice have been set. let buf_slice = unsafe { slice_buffer_to_str(&buf, offset) }; f.pad_integral(is_nonnegative, Self::PREFIX, buf_slice) } } /// A binary (base 2) radix #[derive(Clone, PartialEq)] struct Binary; /// An octal (base 8) radix #[derive(Clone, PartialEq)] struct Octal; /// A hexadecimal (base 16) radix, formatted with lower-case characters #[derive(Clone, PartialEq)] struct LowerHex; /// A hexadecimal (base 16) radix, formatted with upper-case characters #[derive(Clone, PartialEq)] struct UpperHex; macro_rules! radix { ($T:ident, $base:expr, $prefix:expr, $($x:pat => $conv:expr),+) => { unsafe impl GenericRadix for $T { const BASE: u8 = $base; const PREFIX: &'static str = $prefix; fn digit(x: u8) -> u8 { match x { $($x => $conv,)+ x => panic!("number not in the range 0..={}: {}", Self::BASE - 1, x), } } } } } radix! { Binary, 2, "0b", x @ 0 ..= 1 => b'0' + x } radix! { Octal, 8, "0o", x @ 0 ..= 7 => b'0' + x } radix! { LowerHex, 16, "0x", x @ 0 ..= 9 => b'0' + x, x @ 10 ..= 15 => b'a' + (x - 10) } radix! { UpperHex, 16, "0x", x @ 0 ..= 9 => b'0' + x, x @ 10 ..= 15 => b'A' + (x - 10) } macro_rules! int_base { (fmt::$Trait:ident for $T:ident as $U:ident -> $Radix:ident) => { #[stable(feature = "rust1", since = "1.0.0")] impl fmt::$Trait for $T { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { $Radix.fmt_int(*self as $U, f) } } }; } macro_rules! integer { ($Int:ident, $Uint:ident) => { int_base! { fmt::Binary for $Int as $Uint -> Binary } int_base! { fmt::Octal for $Int as $Uint -> Octal } int_base! { fmt::LowerHex for $Int as $Uint -> LowerHex } int_base! { fmt::UpperHex for $Int as $Uint -> UpperHex } int_base! { fmt::Binary for $Uint as $Uint -> Binary } int_base! { fmt::Octal for $Uint as $Uint -> Octal } int_base! { fmt::LowerHex for $Uint as $Uint -> LowerHex } int_base! { fmt::UpperHex for $Uint as $Uint -> UpperHex } }; } integer! { isize, usize } integer! { i8, u8 } integer! { i16, u16 } integer! { i32, u32 } integer! { i64, u64 } integer! { i128, u128 } macro_rules! impl_Debug { ($($T:ident)*) => { $( #[stable(feature = "rust1", since = "1.0.0")] impl fmt::Debug for $T { #[inline] fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { if f.debug_lower_hex() { fmt::LowerHex::fmt(self, f) } else if f.debug_upper_hex() { fmt::UpperHex::fmt(self, f) } else { fmt::Display::fmt(self, f) } } } )* }; } // 2 digit decimal look up table static DEC_DIGITS_LUT: &[u8; 200] = b"\ 0001020304050607080910111213141516171819\ 2021222324252627282930313233343536373839\ 4041424344454647484950515253545556575859\ 6061626364656667686970717273747576777879\ 8081828384858687888990919293949596979899"; /// This function converts a slice of ascii characters into a `&str` starting from `offset`. /// /// # Safety /// /// `buf` content starting from `offset` index MUST BE initialized and MUST BE ascii /// characters. unsafe fn slice_buffer_to_str(buf: &[MaybeUninit], offset: usize) -> &str { // SAFETY: `offset` is always included between 0 and `buf`'s length. let written = unsafe { buf.get_unchecked(offset..) }; // SAFETY: (`assume_init_ref`) All buf content since offset is set. // SAFETY: (`from_utf8_unchecked`) Writes use ASCII from the lookup table exclusively. unsafe { str::from_utf8_unchecked(written.assume_init_ref()) } } macro_rules! impl_Display { ($($signed:ident, $unsigned:ident,)* ; as $u:ident via $conv_fn:ident named $gen_name:ident) => { $( #[stable(feature = "rust1", since = "1.0.0")] impl fmt::Display for $unsigned { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { #[cfg(not(feature = "optimize_for_size"))] { const MAX_DEC_N: usize = $unsigned::MAX.ilog10() as usize + 1; // Buffer decimals for $unsigned with right alignment. let mut buf = [MaybeUninit::::uninit(); MAX_DEC_N]; // SAFETY: `buf` is always big enough to contain all the digits. unsafe { f.pad_integral(true, "", self._fmt(&mut buf)) } } #[cfg(feature = "optimize_for_size")] { $gen_name(self.$conv_fn(), true, f) } } } #[stable(feature = "rust1", since = "1.0.0")] impl fmt::Display for $signed { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { #[cfg(not(feature = "optimize_for_size"))] { const MAX_DEC_N: usize = $unsigned::MAX.ilog10() as usize + 1; // Buffer decimals for $unsigned with right alignment. let mut buf = [MaybeUninit::::uninit(); MAX_DEC_N]; // SAFETY: `buf` is always big enough to contain all the digits. unsafe { f.pad_integral(*self >= 0, "", self.unsigned_abs()._fmt(&mut buf)) } } #[cfg(feature = "optimize_for_size")] { return $gen_name(self.unsigned_abs().$conv_fn(), *self >= 0, f); } } } #[cfg(not(feature = "optimize_for_size"))] impl $unsigned { #[doc(hidden)] #[unstable( feature = "fmt_internals", reason = "specialized method meant to only be used by `SpecToString` implementation", issue = "none" )] pub unsafe fn _fmt<'a>(self, buf: &'a mut [MaybeUninit::]) -> &'a str { // SAFETY: `buf` will always be big enough to contain all digits. let offset = unsafe { self._fmt_inner(buf) }; // SAFETY: Starting from `offset`, all elements of the slice have been set. unsafe { slice_buffer_to_str(buf, offset) } } unsafe fn _fmt_inner(self, buf: &mut [MaybeUninit::]) -> usize { // Count the number of bytes in buf that are not initialized. let mut offset = buf.len(); // Consume the least-significant decimals from a working copy. let mut remain = self; // Format per four digits from the lookup table. // Four digits need a 16-bit $unsigned or wider. while size_of::() > 1 && remain > 999.try_into().expect("branch is not hit for types that cannot fit 999 (u8)") { // SAFETY: All of the decimals fit in buf due to MAX_DEC_N // and the while condition ensures at least 4 more decimals. unsafe { core::hint::assert_unchecked(offset >= 4) } // SAFETY: The offset counts down from its initial buf.len() // without underflow due to the previous precondition. unsafe { core::hint::assert_unchecked(offset <= buf.len()) } offset -= 4; // pull two pairs let scale: Self = 1_00_00.try_into().expect("branch is not hit for types that cannot fit 1E4 (u8)"); let quad = remain % scale; remain /= scale; let pair1 = (quad / 100) as usize; let pair2 = (quad % 100) as usize; buf[offset + 0].write(DEC_DIGITS_LUT[pair1 * 2 + 0]); buf[offset + 1].write(DEC_DIGITS_LUT[pair1 * 2 + 1]); buf[offset + 2].write(DEC_DIGITS_LUT[pair2 * 2 + 0]); buf[offset + 3].write(DEC_DIGITS_LUT[pair2 * 2 + 1]); } // Format per two digits from the lookup table. if remain > 9 { // SAFETY: All of the decimals fit in buf due to MAX_DEC_N // and the if condition ensures at least 2 more decimals. unsafe { core::hint::assert_unchecked(offset >= 2) } // SAFETY: The offset counts down from its initial buf.len() // without underflow due to the previous precondition. unsafe { core::hint::assert_unchecked(offset <= buf.len()) } offset -= 2; let pair = (remain % 100) as usize; remain /= 100; buf[offset + 0].write(DEC_DIGITS_LUT[pair * 2 + 0]); buf[offset + 1].write(DEC_DIGITS_LUT[pair * 2 + 1]); } // Format the last remaining digit, if any. if remain != 0 || self == 0 { // SAFETY: All of the decimals fit in buf due to MAX_DEC_N // and the if condition ensures (at least) 1 more decimals. unsafe { core::hint::assert_unchecked(offset >= 1) } // SAFETY: The offset counts down from its initial buf.len() // without underflow due to the previous precondition. unsafe { core::hint::assert_unchecked(offset <= buf.len()) } offset -= 1; // Either the compiler sees that remain < 10, or it prevents // a boundary check up next. let last = (remain & 15) as usize; buf[offset].write(DEC_DIGITS_LUT[last * 2 + 1]); // not used: remain = 0; } offset } } impl $signed { /// Allows users to write an integer (in signed decimal format) into a variable `buf` of /// type [`NumBuffer`] that is passed by the caller by mutable reference. /// /// # Examples /// /// ``` /// #![feature(int_format_into)] /// use core::fmt::NumBuffer; /// #[doc = concat!("let n = 0", stringify!($signed), ";")] /// let mut buf = NumBuffer::new(); /// assert_eq!(n.format_into(&mut buf), "0"); /// #[doc = concat!("let n1 = 32", stringify!($signed), ";")] /// assert_eq!(n1.format_into(&mut buf), "32"); /// #[doc = concat!("let n2 = ", stringify!($signed::MAX), ";")] #[doc = concat!("assert_eq!(n2.format_into(&mut buf), ", stringify!($signed::MAX), ".to_string());")] /// ``` #[unstable(feature = "int_format_into", issue = "138215")] pub fn format_into(self, buf: &mut NumBuffer) -> &str { let mut offset; #[cfg(not(feature = "optimize_for_size"))] // SAFETY: `buf` will always be big enough to contain all digits. unsafe { offset = self.unsigned_abs()._fmt_inner(&mut buf.buf); } #[cfg(feature = "optimize_for_size")] { offset = ${concat(_inner_slow_integer_to_str, $gen_name)}(self.unsigned_abs().$conv_fn(), &mut buf.buf); } // Only difference between signed and unsigned are these 4 lines. if self < 0 { offset -= 1; buf.buf[offset].write(b'-'); } // SAFETY: Starting from `offset`, all elements of the slice have been set. unsafe { slice_buffer_to_str(&buf.buf, offset) } } } impl $unsigned { /// Allows users to write an integer (in signed decimal format) into a variable `buf` of /// type [`NumBuffer`] that is passed by the caller by mutable reference. /// /// # Examples /// /// ``` /// #![feature(int_format_into)] /// use core::fmt::NumBuffer; /// #[doc = concat!("let n = 0", stringify!($unsigned), ";")] /// let mut buf = NumBuffer::new(); /// assert_eq!(n.format_into(&mut buf), "0"); /// #[doc = concat!("let n1 = 32", stringify!($unsigned), ";")] /// assert_eq!(n1.format_into(&mut buf), "32"); /// #[doc = concat!("let n2 = ", stringify!($unsigned::MAX), ";")] #[doc = concat!("assert_eq!(n2.format_into(&mut buf), ", stringify!($unsigned::MAX), ".to_string());")] /// ``` #[unstable(feature = "int_format_into", issue = "138215")] pub fn format_into(self, buf: &mut NumBuffer) -> &str { let offset; #[cfg(not(feature = "optimize_for_size"))] // SAFETY: `buf` will always be big enough to contain all digits. unsafe { offset = self._fmt_inner(&mut buf.buf); } #[cfg(feature = "optimize_for_size")] { offset = ${concat(_inner_slow_integer_to_str, $gen_name)}(self.$conv_fn(), &mut buf.buf); } // SAFETY: Starting from `offset`, all elements of the slice have been set. unsafe { slice_buffer_to_str(&buf.buf, offset) } } } )* #[cfg(feature = "optimize_for_size")] fn ${concat(_inner_slow_integer_to_str, $gen_name)}(mut n: $u, buf: &mut [MaybeUninit::]) -> usize { let mut curr = buf.len(); // SAFETY: To show that it's OK to copy into `buf_ptr`, notice that at the beginning // `curr == buf.len() == 39 > log(n)` since `n < 2^128 < 10^39`, and at // each step this is kept the same as `n` is divided. Since `n` is always // non-negative, this means that `curr > 0` so `buf_ptr[curr..curr + 1]` // is safe to access. loop { curr -= 1; buf[curr].write((n % 10) as u8 + b'0'); n /= 10; if n == 0 { break; } } curr } #[cfg(feature = "optimize_for_size")] fn $gen_name(n: $u, is_nonnegative: bool, f: &mut fmt::Formatter<'_>) -> fmt::Result { const MAX_DEC_N: usize = $u::MAX.ilog(10) as usize + 1; let mut buf = [MaybeUninit::::uninit(); MAX_DEC_N]; let offset = ${concat(_inner_slow_integer_to_str, $gen_name)}(n, &mut buf); // SAFETY: Starting from `offset`, all elements of the slice have been set. let buf_slice = unsafe { slice_buffer_to_str(&buf, offset) }; f.pad_integral(is_nonnegative, "", buf_slice) } }; } macro_rules! impl_Exp { ($($t:ident),* as $u:ident via $conv_fn:ident named $name:ident) => { fn $name( mut n: $u, is_nonnegative: bool, upper: bool, f: &mut fmt::Formatter<'_> ) -> fmt::Result { let (mut n, mut exponent, trailing_zeros, added_precision) = { let mut exponent = 0; // count and remove trailing decimal zeroes while n % 10 == 0 && n >= 10 { n /= 10; exponent += 1; } let (added_precision, subtracted_precision) = match f.precision() { Some(fmt_prec) => { // number of decimal digits minus 1 let mut tmp = n; let mut prec = 0; while tmp >= 10 { tmp /= 10; prec += 1; } (fmt_prec.saturating_sub(prec), prec.saturating_sub(fmt_prec)) } None => (0, 0) }; for _ in 1..subtracted_precision { n /= 10; exponent += 1; } if subtracted_precision != 0 { let rem = n % 10; n /= 10; exponent += 1; // round up last digit, round to even on a tie if rem > 5 || (rem == 5 && (n % 2 != 0 || subtracted_precision > 1 )) { n += 1; // if the digit is rounded to the next power // instead adjust the exponent if n.ilog10() > (n - 1).ilog10() { n /= 10; exponent += 1; } } } (n, exponent, exponent, added_precision) }; // Since `curr` always decreases by the number of digits copied, this means // that `curr >= 0`. let mut buf = [MaybeUninit::::uninit(); 40]; let mut curr = buf.len(); //index for buf let buf_ptr = MaybeUninit::slice_as_mut_ptr(&mut buf); let lut_ptr = DEC_DIGITS_LUT.as_ptr(); // decode 2 chars at a time while n >= 100 { let d1 = ((n % 100) as usize) << 1; curr -= 2; // SAFETY: `d1 <= 198`, so we can copy from `lut_ptr[d1..d1 + 2]` since // `DEC_DIGITS_LUT` has a length of 200. unsafe { ptr::copy_nonoverlapping(lut_ptr.add(d1), buf_ptr.add(curr), 2); } n /= 100; exponent += 2; } // n is <= 99, so at most 2 chars long let mut n = n as isize; // possibly reduce 64bit math // decode second-to-last character if n >= 10 { curr -= 1; // SAFETY: Safe since `40 > curr >= 0` (see comment) unsafe { *buf_ptr.add(curr) = (n as u8 % 10_u8) + b'0'; } n /= 10; exponent += 1; } // add decimal point iff >1 mantissa digit will be printed if exponent != trailing_zeros || added_precision != 0 { curr -= 1; // SAFETY: Safe since `40 > curr >= 0` unsafe { *buf_ptr.add(curr) = b'.'; } } // SAFETY: Safe since `40 > curr >= 0` let buf_slice = unsafe { // decode last character curr -= 1; *buf_ptr.add(curr) = (n as u8) + b'0'; let len = buf.len() - curr as usize; slice::from_raw_parts(buf_ptr.add(curr), len) }; // stores 'e' (or 'E') and the up to 2-digit exponent let mut exp_buf = [MaybeUninit::::uninit(); 3]; let exp_ptr = MaybeUninit::slice_as_mut_ptr(&mut exp_buf); // SAFETY: In either case, `exp_buf` is written within bounds and `exp_ptr[..len]` // is contained within `exp_buf` since `len <= 3`. let exp_slice = unsafe { *exp_ptr.add(0) = if upper { b'E' } else { b'e' }; let len = if exponent < 10 { *exp_ptr.add(1) = (exponent as u8) + b'0'; 2 } else { let off = exponent << 1; ptr::copy_nonoverlapping(lut_ptr.add(off), exp_ptr.add(1), 2); 3 }; slice::from_raw_parts(exp_ptr, len) }; let parts = &[ numfmt::Part::Copy(buf_slice), numfmt::Part::Zero(added_precision), numfmt::Part::Copy(exp_slice), ]; let sign = if !is_nonnegative { "-" } else if f.sign_plus() { "+" } else { "" }; let formatted = numfmt::Formatted { sign, parts }; // SAFETY: `buf_slice` and `exp_slice` contain only ASCII characters. unsafe { f.pad_formatted_parts(&formatted) } } $( #[stable(feature = "integer_exp_format", since = "1.42.0")] impl fmt::LowerExp for $t { #[allow(unused_comparisons)] fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { let is_nonnegative = *self >= 0; let n = if is_nonnegative { self.$conv_fn() } else { // convert the negative num to positive by summing 1 to its 2s complement (!self.$conv_fn()).wrapping_add(1) }; $name(n, is_nonnegative, false, f) } })* $( #[stable(feature = "integer_exp_format", since = "1.42.0")] impl fmt::UpperExp for $t { #[allow(unused_comparisons)] fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { let is_nonnegative = *self >= 0; let n = if is_nonnegative { self.$conv_fn() } else { // convert the negative num to positive by summing 1 to its 2s complement (!self.$conv_fn()).wrapping_add(1) }; $name(n, is_nonnegative, true, f) } })* }; } impl_Debug! { i8 i16 i32 i64 i128 isize u8 u16 u32 u64 u128 usize } // Include wasm32 in here since it doesn't reflect the native pointer size, and // often cares strongly about getting a smaller code size. #[cfg(any(target_pointer_width = "64", target_arch = "wasm32"))] mod imp { use super::*; impl_Display!( i8, u8, i16, u16, i32, u32, i64, u64, isize, usize, ; as u64 via to_u64 named fmt_u64 ); impl_Exp!( i8, u8, i16, u16, i32, u32, i64, u64, usize, isize as u64 via to_u64 named exp_u64 ); } #[cfg(not(any(target_pointer_width = "64", target_arch = "wasm32")))] mod imp { use super::*; impl_Display!( i8, u8, i16, u16, i32, u32, isize, usize, ; as u32 via to_u32 named fmt_u32); impl_Display!( i64, u64, ; as u64 via to_u64 named fmt_u64); impl_Exp!(i8, u8, i16, u16, i32, u32, isize, usize as u32 via to_u32 named exp_u32); impl_Exp!(i64, u64 as u64 via to_u64 named exp_u64); } impl_Exp!(i128, u128 as u128 via to_u128 named exp_u128); const U128_MAX_DEC_N: usize = u128::MAX.ilog10() as usize + 1; #[stable(feature = "rust1", since = "1.0.0")] impl fmt::Display for u128 { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { let mut buf = [MaybeUninit::::uninit(); U128_MAX_DEC_N]; // SAFETY: `buf` is always big enough to contain all the digits. unsafe { f.pad_integral(true, "", self._fmt(&mut buf)) } } } #[stable(feature = "rust1", since = "1.0.0")] impl fmt::Display for i128 { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { // This is not a typo, we use the maximum number of digits of `u128`, hence why we use // `U128_MAX_DEC_N`. let mut buf = [MaybeUninit::::uninit(); U128_MAX_DEC_N]; let is_nonnegative = *self >= 0; // SAFETY: `buf` is always big enough to contain all the digits. unsafe { f.pad_integral(is_nonnegative, "", self.unsigned_abs()._fmt(&mut buf)) } } } impl u128 { /// Format optimized for u128. Computation of 128 bits is limited by processing /// in batches of 16 decimals at a time. #[doc(hidden)] #[unstable( feature = "fmt_internals", reason = "specialized method meant to only be used by `SpecToString` implementation", issue = "none" )] pub unsafe fn _fmt<'a>(self, buf: &'a mut [MaybeUninit]) -> &'a str { // SAFETY: `buf` will always be big enough to contain all digits. let offset = unsafe { self._fmt_inner(buf) }; // SAFETY: Starting from `offset`, all elements of the slice have been set. unsafe { slice_buffer_to_str(buf, offset) } } unsafe fn _fmt_inner(self, buf: &mut [MaybeUninit]) -> usize { // Optimize common-case zero, which would also need special treatment due to // its "leading" zero. if self == 0 { let offset = buf.len() - 1; buf[offset].write(b'0'); return offset; } // Take the 16 least-significant decimals. let (quot_1e16, mod_1e16) = div_rem_1e16(self); let (mut remain, mut offset) = if quot_1e16 == 0 { (mod_1e16, U128_MAX_DEC_N) } else { // Write digits at buf[23..39]. enc_16lsd::<{ U128_MAX_DEC_N - 16 }>(buf, mod_1e16); // Take another 16 decimals. let (quot2, mod2) = div_rem_1e16(quot_1e16); if quot2 == 0 { (mod2, U128_MAX_DEC_N - 16) } else { // Write digits at buf[7..23]. enc_16lsd::<{ U128_MAX_DEC_N - 32 }>(buf, mod2); // Quot2 has at most 7 decimals remaining after two 1e16 divisions. (quot2 as u64, U128_MAX_DEC_N - 32) } }; // Format per four digits from the lookup table. while remain > 999 { // SAFETY: All of the decimals fit in buf due to U128_MAX_DEC_N // and the while condition ensures at least 4 more decimals. unsafe { core::hint::assert_unchecked(offset >= 4) } // SAFETY: The offset counts down from its initial buf.len() // without underflow due to the previous precondition. unsafe { core::hint::assert_unchecked(offset <= buf.len()) } offset -= 4; // pull two pairs let quad = remain % 1_00_00; remain /= 1_00_00; let pair1 = (quad / 100) as usize; let pair2 = (quad % 100) as usize; buf[offset + 0].write(DEC_DIGITS_LUT[pair1 * 2 + 0]); buf[offset + 1].write(DEC_DIGITS_LUT[pair1 * 2 + 1]); buf[offset + 2].write(DEC_DIGITS_LUT[pair2 * 2 + 0]); buf[offset + 3].write(DEC_DIGITS_LUT[pair2 * 2 + 1]); } // Format per two digits from the lookup table. if remain > 9 { // SAFETY: All of the decimals fit in buf due to U128_MAX_DEC_N // and the if condition ensures at least 2 more decimals. unsafe { core::hint::assert_unchecked(offset >= 2) } // SAFETY: The offset counts down from its initial buf.len() // without underflow due to the previous precondition. unsafe { core::hint::assert_unchecked(offset <= buf.len()) } offset -= 2; let pair = (remain % 100) as usize; remain /= 100; buf[offset + 0].write(DEC_DIGITS_LUT[pair * 2 + 0]); buf[offset + 1].write(DEC_DIGITS_LUT[pair * 2 + 1]); } // Format the last remaining digit, if any. if remain != 0 { // SAFETY: All of the decimals fit in buf due to U128_MAX_DEC_N // and the if condition ensures (at least) 1 more decimals. unsafe { core::hint::assert_unchecked(offset >= 1) } // SAFETY: The offset counts down from its initial buf.len() // without underflow due to the previous precondition. unsafe { core::hint::assert_unchecked(offset <= buf.len()) } offset -= 1; // Either the compiler sees that remain < 10, or it prevents // a boundary check up next. let last = (remain & 15) as usize; buf[offset].write(DEC_DIGITS_LUT[last * 2 + 1]); // not used: remain = 0; } offset } /// Allows users to write an integer (in signed decimal format) into a variable `buf` of /// type [`NumBuffer`] that is passed by the caller by mutable reference. /// /// # Examples /// /// ``` /// #![feature(int_format_into)] /// use core::fmt::NumBuffer; /// /// let n = 0u128; /// let mut buf = NumBuffer::new(); /// assert_eq!(n.format_into(&mut buf), "0"); /// /// let n1 = 32u128; /// let mut buf1 = NumBuffer::new(); /// assert_eq!(n1.format_into(&mut buf1), "32"); /// /// let n2 = u128::MAX; /// let mut buf2 = NumBuffer::new(); /// assert_eq!(n2.format_into(&mut buf2), u128::MAX.to_string()); /// ``` #[unstable(feature = "int_format_into", issue = "138215")] pub fn format_into(self, buf: &mut NumBuffer) -> &str { let diff = buf.capacity() - U128_MAX_DEC_N; // FIXME: Once const generics are better, use `NumberBufferTrait::BUF_SIZE` as generic const // for `fmt_u128_inner`. // // In the meantime, we have to use a slice starting at index 1 and add 1 to the returned // offset to ensure the number is correctly generated at the end of the buffer. // SAFETY: `diff` will always be between 0 and its initial value. unsafe { self._fmt(buf.buf.get_unchecked_mut(diff..)) } } } impl i128 { /// Allows users to write an integer (in signed decimal format) into a variable `buf` of /// type [`NumBuffer`] that is passed by the caller by mutable reference. /// /// # Examples /// /// ``` /// #![feature(int_format_into)] /// use core::fmt::NumBuffer; /// /// let n = 0i128; /// let mut buf = NumBuffer::new(); /// assert_eq!(n.format_into(&mut buf), "0"); /// /// let n1 = i128::MIN; /// assert_eq!(n1.format_into(&mut buf), i128::MIN.to_string()); /// /// let n2 = i128::MAX; /// assert_eq!(n2.format_into(&mut buf), i128::MAX.to_string()); /// ``` #[unstable(feature = "int_format_into", issue = "138215")] pub fn format_into(self, buf: &mut NumBuffer) -> &str { let diff = buf.capacity() - U128_MAX_DEC_N; // FIXME: Once const generics are better, use `NumberBufferTrait::BUF_SIZE` as generic const // for `fmt_u128_inner`. // // In the meantime, we have to use a slice starting at index 1 and add 1 to the returned // offset to ensure the number is correctly generated at the end of the buffer. let mut offset = // SAFETY: `buf` will always be big enough to contain all digits. unsafe { self.unsigned_abs()._fmt_inner(buf.buf.get_unchecked_mut(diff..)) }; // We put back the offset at the right position. offset += diff; // Only difference between signed and unsigned are these 4 lines. if self < 0 { offset -= 1; // SAFETY: `buf` will always be big enough to contain all digits plus the minus sign. unsafe { buf.buf.get_unchecked_mut(offset).write(b'-'); } } // SAFETY: Starting from `offset`, all elements of the slice have been set. unsafe { slice_buffer_to_str(&buf.buf, offset) } } } /// Encodes the 16 least-significant decimals of n into `buf[OFFSET .. OFFSET + /// 16 ]`. fn enc_16lsd(buf: &mut [MaybeUninit], n: u64) { // Consume the least-significant decimals from a working copy. let mut remain = n; // Format per four digits from the lookup table. for quad_index in (0..4).rev() { // pull two pairs let quad = remain % 1_00_00; remain /= 1_00_00; let pair1 = (quad / 100) as usize; let pair2 = (quad % 100) as usize; buf[quad_index * 4 + OFFSET + 0].write(DEC_DIGITS_LUT[pair1 * 2 + 0]); buf[quad_index * 4 + OFFSET + 1].write(DEC_DIGITS_LUT[pair1 * 2 + 1]); buf[quad_index * 4 + OFFSET + 2].write(DEC_DIGITS_LUT[pair2 * 2 + 0]); buf[quad_index * 4 + OFFSET + 3].write(DEC_DIGITS_LUT[pair2 * 2 + 1]); } } /// Euclidean division plus remainder with constant 1E16 basically consumes 16 /// decimals from n. /// /// The integer division algorithm is based on the following paper: /// /// T. Granlund and P. Montgomery, “Division by Invariant Integers Using Multiplication” /// in Proc. of the SIGPLAN94 Conference on Programming Language Design and /// Implementation, 1994, pp. 61–72 /// #[inline] fn div_rem_1e16(n: u128) -> (u128, u64) { const D: u128 = 1_0000_0000_0000_0000; // The check inlines well with the caller flow. if n < D { return (0, n as u64); } // These constant values are computed with the CHOOSE_MULTIPLIER procedure // from the Granlund & Montgomery paper, using N=128, prec=128 and d=1E16. const M_HIGH: u128 = 76624777043294442917917351357515459181; const SH_POST: u8 = 51; let quot = n.widening_mul(M_HIGH).1 >> SH_POST; let rem = n - quot * D; (quot, rem as u64) }