//! This module provides constants which are specific to the implementation //! of the `f32` floating point data type. //! //! *[See also the `f32` primitive type](../../std/primitive.f32.html).* //! //! Mathematically significant numbers are provided in the `consts` sub-module. //! //! Although using these constants won’t cause compilation warnings, //! new code should use the associated constants directly on the primitive type. #![stable(feature = "rust1", since = "1.0.0")] use crate::convert::FloatToInt; #[cfg(not(test))] use crate::intrinsics; use crate::mem; use crate::num::FpCategory; /// The radix or base of the internal representation of `f32`. /// Use [`f32::RADIX`](../../std/primitive.f32.html#associatedconstant.RADIX) instead. /// /// # Examples /// /// ```rust /// // deprecated way /// let r = std::f32::RADIX; /// /// // intended way /// let r = f32::RADIX; /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub const RADIX: u32 = f32::RADIX; /// Number of significant digits in base 2. /// Use [`f32::MANTISSA_DIGITS`](../../std/primitive.f32.html#associatedconstant.MANTISSA_DIGITS) instead. /// /// # Examples /// /// ```rust /// // deprecated way /// let d = std::f32::MANTISSA_DIGITS; /// /// // intended way /// let d = f32::MANTISSA_DIGITS; /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub const MANTISSA_DIGITS: u32 = f32::MANTISSA_DIGITS; /// Approximate number of significant digits in base 10. /// Use [`f32::DIGITS`](../../std/primitive.f32.html#associatedconstant.DIGITS) instead. /// /// # Examples /// /// ```rust /// // deprecated way /// let d = std::f32::DIGITS; /// /// // intended way /// let d = f32::DIGITS; /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub const DIGITS: u32 = f32::DIGITS; /// [Machine epsilon] value for `f32`. /// Use [`f32::EPSILON`](../../std/primitive.f32.html#associatedconstant.EPSILON) instead. /// /// This is the difference between `1.0` and the next larger representable number. /// /// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon /// /// # Examples /// /// ```rust /// // deprecated way /// let e = std::f32::EPSILON; /// /// // intended way /// let e = f32::EPSILON; /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub const EPSILON: f32 = f32::EPSILON; /// Smallest finite `f32` value. /// Use [`f32::MIN`](../../std/primitive.f32.html#associatedconstant.MIN) instead. /// /// # Examples /// /// ```rust /// // deprecated way /// let min = std::f32::MIN; /// /// // intended way /// let min = f32::MIN; /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub const MIN: f32 = f32::MIN; /// Smallest positive normal `f32` value. /// Use [`f32::MIN_POSITIVE`](../../std/primitive.f32.html#associatedconstant.MIN_POSITIVE) instead. /// /// # Examples /// /// ```rust /// // deprecated way /// let min = std::f32::MIN_POSITIVE; /// /// // intended way /// let min = f32::MIN_POSITIVE; /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub const MIN_POSITIVE: f32 = f32::MIN_POSITIVE; /// Largest finite `f32` value. /// Use [`f32::MAX`](../../std/primitive.f32.html#associatedconstant.MAX) instead. /// /// # Examples /// /// ```rust /// // deprecated way /// let max = std::f32::MAX; /// /// // intended way /// let max = f32::MAX; /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub const MAX: f32 = f32::MAX; /// One greater than the minimum possible normal power of 2 exponent. /// Use [`f32::MIN_EXP`](../../std/primitive.f32.html#associatedconstant.MIN_EXP) instead. /// /// # Examples /// /// ```rust /// // deprecated way /// let min = std::f32::MIN_EXP; /// /// // intended way /// let min = f32::MIN_EXP; /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub const MIN_EXP: i32 = f32::MIN_EXP; /// Maximum possible power of 2 exponent. /// Use [`f32::MAX_EXP`](../../std/primitive.f32.html#associatedconstant.MAX_EXP) instead. /// /// # Examples /// /// ```rust /// // deprecated way /// let max = std::f32::MAX_EXP; /// /// // intended way /// let max = f32::MAX_EXP; /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub const MAX_EXP: i32 = f32::MAX_EXP; /// Minimum possible normal power of 10 exponent. /// Use [`f32::MIN_10_EXP`](../../std/primitive.f32.html#associatedconstant.MIN_10_EXP) instead. /// /// # Examples /// /// ```rust /// // deprecated way /// let min = std::f32::MIN_10_EXP; /// /// // intended way /// let min = f32::MIN_10_EXP; /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub const MIN_10_EXP: i32 = f32::MIN_10_EXP; /// Maximum possible power of 10 exponent. /// Use [`f32::MAX_10_EXP`](../../std/primitive.f32.html#associatedconstant.MAX_10_EXP) instead. /// /// # Examples /// /// ```rust /// // deprecated way /// let max = std::f32::MAX_10_EXP; /// /// // intended way /// let max = f32::MAX_10_EXP; /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub const MAX_10_EXP: i32 = f32::MAX_10_EXP; /// Not a Number (NaN). /// Use [`f32::NAN`](../../std/primitive.f32.html#associatedconstant.NAN) instead. /// /// # Examples /// /// ```rust /// // deprecated way /// let nan = std::f32::NAN; /// /// // intended way /// let nan = f32::NAN; /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub const NAN: f32 = f32::NAN; /// Infinity (∞). /// Use [`f32::INFINITY`](../../std/primitive.f32.html#associatedconstant.INFINITY) instead. /// /// # Examples /// /// ```rust /// // deprecated way /// let inf = std::f32::INFINITY; /// /// // intended way /// let inf = f32::INFINITY; /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub const INFINITY: f32 = f32::INFINITY; /// Negative infinity (−∞). /// Use [`f32::NEG_INFINITY`](../../std/primitive.f32.html#associatedconstant.NEG_INFINITY) instead. /// /// # Examples /// /// ```rust /// // deprecated way /// let ninf = std::f32::NEG_INFINITY; /// /// // intended way /// let ninf = f32::NEG_INFINITY; /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub const NEG_INFINITY: f32 = f32::NEG_INFINITY; /// Basic mathematical constants. #[stable(feature = "rust1", since = "1.0.0")] pub mod consts { // FIXME: replace with mathematical constants from cmath. /// Archimedes' constant (π) #[stable(feature = "rust1", since = "1.0.0")] pub const PI: f32 = 3.14159265358979323846264338327950288_f32; /// The full circle constant (τ) /// /// Equal to 2π. #[stable(feature = "tau_constant", since = "1.47.0")] pub const TAU: f32 = 6.28318530717958647692528676655900577_f32; /// π/2 #[stable(feature = "rust1", since = "1.0.0")] pub const FRAC_PI_2: f32 = 1.57079632679489661923132169163975144_f32; /// π/3 #[stable(feature = "rust1", since = "1.0.0")] pub const FRAC_PI_3: f32 = 1.04719755119659774615421446109316763_f32; /// π/4 #[stable(feature = "rust1", since = "1.0.0")] pub const FRAC_PI_4: f32 = 0.785398163397448309615660845819875721_f32; /// π/6 #[stable(feature = "rust1", since = "1.0.0")] pub const FRAC_PI_6: f32 = 0.52359877559829887307710723054658381_f32; /// π/8 #[stable(feature = "rust1", since = "1.0.0")] pub const FRAC_PI_8: f32 = 0.39269908169872415480783042290993786_f32; /// 1/π #[stable(feature = "rust1", since = "1.0.0")] pub const FRAC_1_PI: f32 = 0.318309886183790671537767526745028724_f32; /// 2/π #[stable(feature = "rust1", since = "1.0.0")] pub const FRAC_2_PI: f32 = 0.636619772367581343075535053490057448_f32; /// 2/sqrt(π) #[stable(feature = "rust1", since = "1.0.0")] pub const FRAC_2_SQRT_PI: f32 = 1.12837916709551257389615890312154517_f32; /// sqrt(2) #[stable(feature = "rust1", since = "1.0.0")] pub const SQRT_2: f32 = 1.41421356237309504880168872420969808_f32; /// 1/sqrt(2) #[stable(feature = "rust1", since = "1.0.0")] pub const FRAC_1_SQRT_2: f32 = 0.707106781186547524400844362104849039_f32; /// Euler's number (e) #[stable(feature = "rust1", since = "1.0.0")] pub const E: f32 = 2.71828182845904523536028747135266250_f32; /// log2(e) #[stable(feature = "rust1", since = "1.0.0")] pub const LOG2_E: f32 = 1.44269504088896340735992468100189214_f32; /// log2(10) #[stable(feature = "extra_log_consts", since = "1.43.0")] pub const LOG2_10: f32 = 3.32192809488736234787031942948939018_f32; /// log10(e) #[stable(feature = "rust1", since = "1.0.0")] pub const LOG10_E: f32 = 0.434294481903251827651128918916605082_f32; /// log10(2) #[stable(feature = "extra_log_consts", since = "1.43.0")] pub const LOG10_2: f32 = 0.301029995663981195213738894724493027_f32; /// ln(2) #[stable(feature = "rust1", since = "1.0.0")] pub const LN_2: f32 = 0.693147180559945309417232121458176568_f32; /// ln(10) #[stable(feature = "rust1", since = "1.0.0")] pub const LN_10: f32 = 2.30258509299404568401799145468436421_f32; } #[lang = "f32"] #[cfg(not(test))] impl f32 { /// The radix or base of the internal representation of `f32`. #[stable(feature = "assoc_int_consts", since = "1.43.0")] pub const RADIX: u32 = 2; /// Number of significant digits in base 2. #[stable(feature = "assoc_int_consts", since = "1.43.0")] pub const MANTISSA_DIGITS: u32 = 24; /// Approximate number of significant digits in base 10. #[stable(feature = "assoc_int_consts", since = "1.43.0")] pub const DIGITS: u32 = 6; /// [Machine epsilon] value for `f32`. /// /// This is the difference between `1.0` and the next larger representable number. /// /// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon #[stable(feature = "assoc_int_consts", since = "1.43.0")] pub const EPSILON: f32 = 1.19209290e-07_f32; /// Smallest finite `f32` value. #[stable(feature = "assoc_int_consts", since = "1.43.0")] pub const MIN: f32 = -3.40282347e+38_f32; /// Smallest positive normal `f32` value. #[stable(feature = "assoc_int_consts", since = "1.43.0")] pub const MIN_POSITIVE: f32 = 1.17549435e-38_f32; /// Largest finite `f32` value. #[stable(feature = "assoc_int_consts", since = "1.43.0")] pub const MAX: f32 = 3.40282347e+38_f32; /// One greater than the minimum possible normal power of 2 exponent. #[stable(feature = "assoc_int_consts", since = "1.43.0")] pub const MIN_EXP: i32 = -125; /// Maximum possible power of 2 exponent. #[stable(feature = "assoc_int_consts", since = "1.43.0")] pub const MAX_EXP: i32 = 128; /// Minimum possible normal power of 10 exponent. #[stable(feature = "assoc_int_consts", since = "1.43.0")] pub const MIN_10_EXP: i32 = -37; /// Maximum possible power of 10 exponent. #[stable(feature = "assoc_int_consts", since = "1.43.0")] pub const MAX_10_EXP: i32 = 38; /// Not a Number (NaN). #[stable(feature = "assoc_int_consts", since = "1.43.0")] pub const NAN: f32 = 0.0_f32 / 0.0_f32; /// Infinity (∞). #[stable(feature = "assoc_int_consts", since = "1.43.0")] pub const INFINITY: f32 = 1.0_f32 / 0.0_f32; /// Negative infinity (−∞). #[stable(feature = "assoc_int_consts", since = "1.43.0")] pub const NEG_INFINITY: f32 = -1.0_f32 / 0.0_f32; /// Returns `true` if this value is `NaN`. /// /// ``` /// let nan = f32::NAN; /// let f = 7.0_f32; /// /// assert!(nan.is_nan()); /// assert!(!f.is_nan()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")] #[inline] pub const fn is_nan(self) -> bool { self != self } // FIXME(#50145): `abs` is publicly unavailable in libcore due to // concerns about portability, so this implementation is for // private use internally. #[inline] #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")] const fn abs_private(self) -> f32 { f32::from_bits(self.to_bits() & 0x7fff_ffff) } /// Returns `true` if this value is positive infinity or negative infinity, and /// `false` otherwise. /// /// ``` /// let f = 7.0f32; /// let inf = f32::INFINITY; /// let neg_inf = f32::NEG_INFINITY; /// let nan = f32::NAN; /// /// assert!(!f.is_infinite()); /// assert!(!nan.is_infinite()); /// /// assert!(inf.is_infinite()); /// assert!(neg_inf.is_infinite()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")] #[inline] pub const fn is_infinite(self) -> bool { self.abs_private() == Self::INFINITY } /// Returns `true` if this number is neither infinite nor `NaN`. /// /// ``` /// let f = 7.0f32; /// let inf = f32::INFINITY; /// let neg_inf = f32::NEG_INFINITY; /// let nan = f32::NAN; /// /// assert!(f.is_finite()); /// /// assert!(!nan.is_finite()); /// assert!(!inf.is_finite()); /// assert!(!neg_inf.is_finite()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")] #[inline] pub const fn is_finite(self) -> bool { // There's no need to handle NaN separately: if self is NaN, // the comparison is not true, exactly as desired. self.abs_private() < Self::INFINITY } /// Returns `true` if the number is neither zero, infinite, /// [subnormal], or `NaN`. /// /// ``` /// let min = f32::MIN_POSITIVE; // 1.17549435e-38f32 /// let max = f32::MAX; /// let lower_than_min = 1.0e-40_f32; /// let zero = 0.0_f32; /// /// assert!(min.is_normal()); /// assert!(max.is_normal()); /// /// assert!(!zero.is_normal()); /// assert!(!f32::NAN.is_normal()); /// assert!(!f32::INFINITY.is_normal()); /// // Values between `0` and `min` are Subnormal. /// assert!(!lower_than_min.is_normal()); /// ``` /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number #[stable(feature = "rust1", since = "1.0.0")] #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")] #[inline] pub const fn is_normal(self) -> bool { matches!(self.classify(), FpCategory::Normal) } /// Returns the floating point category of the number. If only one property /// is going to be tested, it is generally faster to use the specific /// predicate instead. /// /// ``` /// use std::num::FpCategory; /// /// let num = 12.4_f32; /// let inf = f32::INFINITY; /// /// assert_eq!(num.classify(), FpCategory::Normal); /// assert_eq!(inf.classify(), FpCategory::Infinite); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")] pub const fn classify(self) -> FpCategory { const EXP_MASK: u32 = 0x7f800000; const MAN_MASK: u32 = 0x007fffff; let bits = self.to_bits(); match (bits & MAN_MASK, bits & EXP_MASK) { (0, 0) => FpCategory::Zero, (_, 0) => FpCategory::Subnormal, (0, EXP_MASK) => FpCategory::Infinite, (_, EXP_MASK) => FpCategory::Nan, _ => FpCategory::Normal, } } /// Returns `true` if `self` has a positive sign, including `+0.0`, `NaN`s with /// positive sign bit and positive infinity. /// /// ``` /// let f = 7.0_f32; /// let g = -7.0_f32; /// /// assert!(f.is_sign_positive()); /// assert!(!g.is_sign_positive()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")] #[inline] pub const fn is_sign_positive(self) -> bool { !self.is_sign_negative() } /// Returns `true` if `self` has a negative sign, including `-0.0`, `NaN`s with /// negative sign bit and negative infinity. /// /// ``` /// let f = 7.0f32; /// let g = -7.0f32; /// /// assert!(!f.is_sign_negative()); /// assert!(g.is_sign_negative()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")] #[inline] pub const fn is_sign_negative(self) -> bool { // IEEE754 says: isSignMinus(x) is true if and only if x has negative sign. isSignMinus // applies to zeros and NaNs as well. self.to_bits() & 0x8000_0000 != 0 } /// Takes the reciprocal (inverse) of a number, `1/x`. /// /// ``` /// let x = 2.0_f32; /// let abs_difference = (x.recip() - (1.0 / x)).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn recip(self) -> f32 { 1.0 / self } /// Converts radians to degrees. /// /// ``` /// let angle = std::f32::consts::PI; /// /// let abs_difference = (angle.to_degrees() - 180.0).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// ``` #[stable(feature = "f32_deg_rad_conversions", since = "1.7.0")] #[inline] pub fn to_degrees(self) -> f32 { // Use a constant for better precision. const PIS_IN_180: f32 = 57.2957795130823208767981548141051703_f32; self * PIS_IN_180 } /// Converts degrees to radians. /// /// ``` /// let angle = 180.0f32; /// /// let abs_difference = (angle.to_radians() - std::f32::consts::PI).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// ``` #[stable(feature = "f32_deg_rad_conversions", since = "1.7.0")] #[inline] pub fn to_radians(self) -> f32 { let value: f32 = consts::PI; self * (value / 180.0f32) } /// Returns the maximum of the two numbers. /// /// ``` /// let x = 1.0f32; /// let y = 2.0f32; /// /// assert_eq!(x.max(y), y); /// ``` /// /// If one of the arguments is NaN, then the other argument is returned. #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn max(self, other: f32) -> f32 { intrinsics::maxnumf32(self, other) } /// Returns the minimum of the two numbers. /// /// ``` /// let x = 1.0f32; /// let y = 2.0f32; /// /// assert_eq!(x.min(y), x); /// ``` /// /// If one of the arguments is NaN, then the other argument is returned. #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn min(self, other: f32) -> f32 { intrinsics::minnumf32(self, other) } /// Rounds toward zero and converts to any primitive integer type, /// assuming that the value is finite and fits in that type. /// /// ``` /// let value = 4.6_f32; /// let rounded = unsafe { value.to_int_unchecked::() }; /// assert_eq!(rounded, 4); /// /// let value = -128.9_f32; /// let rounded = unsafe { value.to_int_unchecked::() }; /// assert_eq!(rounded, i8::MIN); /// ``` /// /// # Safety /// /// The value must: /// /// * Not be `NaN` /// * Not be infinite /// * Be representable in the return type `Int`, after truncating off its fractional part #[stable(feature = "float_approx_unchecked_to", since = "1.44.0")] #[inline] pub unsafe fn to_int_unchecked(self) -> Int where Self: FloatToInt, { // SAFETY: the caller must uphold the safety contract for // `FloatToInt::to_int_unchecked`. unsafe { FloatToInt::::to_int_unchecked(self) } } /// Raw transmutation to `u32`. /// /// This is currently identical to `transmute::(self)` on all platforms. /// /// See `from_bits` for some discussion of the portability of this operation /// (there are almost no issues). /// /// Note that this function is distinct from `as` casting, which attempts to /// preserve the *numeric* value, and not the bitwise value. /// /// # Examples /// /// ``` /// assert_ne!((1f32).to_bits(), 1f32 as u32); // to_bits() is not casting! /// assert_eq!((12.5f32).to_bits(), 0x41480000); /// /// ``` #[stable(feature = "float_bits_conv", since = "1.20.0")] #[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")] #[inline] pub const fn to_bits(self) -> u32 { // SAFETY: `u32` is a plain old datatype so we can always transmute to it unsafe { mem::transmute(self) } } /// Raw transmutation from `u32`. /// /// This is currently identical to `transmute::(v)` on all platforms. /// It turns out this is incredibly portable, for two reasons: /// /// * Floats and Ints have the same endianness on all supported platforms. /// * IEEE-754 very precisely specifies the bit layout of floats. /// /// However there is one caveat: prior to the 2008 version of IEEE-754, how /// to interpret the NaN signaling bit wasn't actually specified. Most platforms /// (notably x86 and ARM) picked the interpretation that was ultimately /// standardized in 2008, but some didn't (notably MIPS). As a result, all /// signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa. /// /// Rather than trying to preserve signaling-ness cross-platform, this /// implementation favors preserving the exact bits. This means that /// any payloads encoded in NaNs will be preserved even if the result of /// this method is sent over the network from an x86 machine to a MIPS one. /// /// If the results of this method are only manipulated by the same /// architecture that produced them, then there is no portability concern. /// /// If the input isn't NaN, then there is no portability concern. /// /// If you don't care about signalingness (very likely), then there is no /// portability concern. /// /// Note that this function is distinct from `as` casting, which attempts to /// preserve the *numeric* value, and not the bitwise value. /// /// # Examples /// /// ``` /// let v = f32::from_bits(0x41480000); /// assert_eq!(v, 12.5); /// ``` #[stable(feature = "float_bits_conv", since = "1.20.0")] #[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")] #[inline] pub const fn from_bits(v: u32) -> Self { // SAFETY: `u32` is a plain old datatype so we can always transmute from it // It turns out the safety issues with sNaN were overblown! Hooray! unsafe { mem::transmute(v) } } /// Return the memory representation of this floating point number as a byte array in /// big-endian (network) byte order. /// /// # Examples /// /// ``` /// let bytes = 12.5f32.to_be_bytes(); /// assert_eq!(bytes, [0x41, 0x48, 0x00, 0x00]); /// ``` #[stable(feature = "float_to_from_bytes", since = "1.40.0")] #[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")] #[inline] pub const fn to_be_bytes(self) -> [u8; 4] { self.to_bits().to_be_bytes() } /// Return the memory representation of this floating point number as a byte array in /// little-endian byte order. /// /// # Examples /// /// ``` /// let bytes = 12.5f32.to_le_bytes(); /// assert_eq!(bytes, [0x00, 0x00, 0x48, 0x41]); /// ``` #[stable(feature = "float_to_from_bytes", since = "1.40.0")] #[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")] #[inline] pub const fn to_le_bytes(self) -> [u8; 4] { self.to_bits().to_le_bytes() } /// Return the memory representation of this floating point number as a byte array in /// native byte order. /// /// As the target platform's native endianness is used, portable code /// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate, instead. /// /// [`to_be_bytes`]: #method.to_be_bytes /// [`to_le_bytes`]: #method.to_le_bytes /// /// # Examples /// /// ``` /// let bytes = 12.5f32.to_ne_bytes(); /// assert_eq!( /// bytes, /// if cfg!(target_endian = "big") { /// [0x41, 0x48, 0x00, 0x00] /// } else { /// [0x00, 0x00, 0x48, 0x41] /// } /// ); /// ``` #[stable(feature = "float_to_from_bytes", since = "1.40.0")] #[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")] #[inline] pub const fn to_ne_bytes(self) -> [u8; 4] { self.to_bits().to_ne_bytes() } /// Create a floating point value from its representation as a byte array in big endian. /// /// # Examples /// /// ``` /// let value = f32::from_be_bytes([0x41, 0x48, 0x00, 0x00]); /// assert_eq!(value, 12.5); /// ``` #[stable(feature = "float_to_from_bytes", since = "1.40.0")] #[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")] #[inline] pub const fn from_be_bytes(bytes: [u8; 4]) -> Self { Self::from_bits(u32::from_be_bytes(bytes)) } /// Create a floating point value from its representation as a byte array in little endian. /// /// # Examples /// /// ``` /// let value = f32::from_le_bytes([0x00, 0x00, 0x48, 0x41]); /// assert_eq!(value, 12.5); /// ``` #[stable(feature = "float_to_from_bytes", since = "1.40.0")] #[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")] #[inline] pub const fn from_le_bytes(bytes: [u8; 4]) -> Self { Self::from_bits(u32::from_le_bytes(bytes)) } /// Create a floating point value from its representation as a byte array in native endian. /// /// As the target platform's native endianness is used, portable code /// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as /// appropriate instead. /// /// [`from_be_bytes`]: #method.from_be_bytes /// [`from_le_bytes`]: #method.from_le_bytes /// /// # Examples /// /// ``` /// let value = f32::from_ne_bytes(if cfg!(target_endian = "big") { /// [0x41, 0x48, 0x00, 0x00] /// } else { /// [0x00, 0x00, 0x48, 0x41] /// }); /// assert_eq!(value, 12.5); /// ``` #[stable(feature = "float_to_from_bytes", since = "1.40.0")] #[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")] #[inline] pub const fn from_ne_bytes(bytes: [u8; 4]) -> Self { Self::from_bits(u32::from_ne_bytes(bytes)) } /// Returns an ordering between self and other values. /// Unlike the standard partial comparison between floating point numbers, /// this comparison always produces an ordering in accordance to /// the totalOrder predicate as defined in IEEE 754 (2008 revision) /// floating point standard. The values are ordered in following order: /// - Negative quiet NaN /// - Negative signaling NaN /// - Negative infinity /// - Negative numbers /// - Negative subnormal numbers /// - Negative zero /// - Positive zero /// - Positive subnormal numbers /// - Positive numbers /// - Positive infinity /// - Positive signaling NaN /// - Positive quiet NaN /// /// # Example /// ``` /// #![feature(total_cmp)] /// struct GoodBoy { /// name: String, /// weight: f32, /// } /// /// let mut bois = vec![ /// GoodBoy { name: "Pucci".to_owned(), weight: 0.1 }, /// GoodBoy { name: "Woofer".to_owned(), weight: 99.0 }, /// GoodBoy { name: "Yapper".to_owned(), weight: 10.0 }, /// GoodBoy { name: "Chonk".to_owned(), weight: f32::INFINITY }, /// GoodBoy { name: "Abs. Unit".to_owned(), weight: f32::NAN }, /// GoodBoy { name: "Floaty".to_owned(), weight: -5.0 }, /// ]; /// /// bois.sort_by(|a, b| a.weight.total_cmp(&b.weight)); /// # assert!(bois.into_iter().map(|b| b.weight) /// # .zip([-5.0, 0.1, 10.0, 99.0, f32::INFINITY, f32::NAN].iter()) /// # .all(|(a, b)| a.to_bits() == b.to_bits())) /// ``` #[unstable(feature = "total_cmp", issue = "72599")] #[inline] pub fn total_cmp(&self, other: &Self) -> crate::cmp::Ordering { let mut left = self.to_bits() as i32; let mut right = other.to_bits() as i32; // In case of negatives, flip all the bits except the sign // to achieve a similar layout as two's complement integers // // Why does this work? IEEE 754 floats consist of three fields: // Sign bit, exponent and mantissa. The set of exponent and mantissa // fields as a whole have the property that their bitwise order is // equal to the numeric magnitude where the magnitude is defined. // The magnitude is not normally defined on NaN values, but // IEEE 754 totalOrder defines the NaN values also to follow the // bitwise order. This leads to order explained in the doc comment. // However, the representation of magnitude is the same for negative // and positive numbers – only the sign bit is different. // To easily compare the floats as signed integers, we need to // flip the exponent and mantissa bits in case of negative numbers. // We effectively convert the numbers to "two's complement" form. // // To do the flipping, we construct a mask and XOR against it. // We branchlessly calculate an "all-ones except for the sign bit" // mask from negative-signed values: right shifting sign-extends // the integer, so we "fill" the mask with sign bits, and then // convert to unsigned to push one more zero bit. // On positive values, the mask is all zeros, so it's a no-op. left ^= (((left >> 31) as u32) >> 1) as i32; right ^= (((right >> 31) as u32) >> 1) as i32; left.cmp(&right) } }