//! Definitions of integer that is known not to equal zero. use super::{IntErrorKind, ParseIntError}; use crate::clone::UseCloned; use crate::cmp::Ordering; use crate::hash::{Hash, Hasher}; use crate::marker::{Freeze, StructuralPartialEq}; use crate::ops::{BitOr, BitOrAssign, Div, DivAssign, Neg, Rem, RemAssign}; use crate::panic::{RefUnwindSafe, UnwindSafe}; use crate::str::FromStr; use crate::{fmt, intrinsics, ptr, ub_checks}; /// A marker trait for primitive types which can be zero. /// /// This is an implementation detail for [NonZero]\ which may disappear or be replaced at any time. /// /// # Safety /// /// Types implementing this trait must be primitives that are valid when zeroed. /// /// The associated `Self::NonZeroInner` type must have the same size+align as `Self`, /// but with a niche and bit validity making it so the following `transmutes` are sound: /// /// - `Self::NonZeroInner` to `Option` /// - `Option` to `Self` /// /// (And, consequently, `Self::NonZeroInner` to `Self`.) #[unstable( feature = "nonzero_internals", reason = "implementation detail which may disappear or be replaced at any time", issue = "none" )] pub unsafe trait ZeroablePrimitive: Sized + Copy + private::Sealed { #[doc(hidden)] type NonZeroInner: Sized + Copy; } macro_rules! impl_zeroable_primitive { ($($NonZeroInner:ident ( $primitive:ty )),+ $(,)?) => { mod private { #[unstable( feature = "nonzero_internals", reason = "implementation detail which may disappear or be replaced at any time", issue = "none" )] pub trait Sealed {} } $( #[unstable( feature = "nonzero_internals", reason = "implementation detail which may disappear or be replaced at any time", issue = "none" )] impl private::Sealed for $primitive {} #[unstable( feature = "nonzero_internals", reason = "implementation detail which may disappear or be replaced at any time", issue = "none" )] unsafe impl ZeroablePrimitive for $primitive { type NonZeroInner = super::niche_types::$NonZeroInner; } )+ }; } impl_zeroable_primitive!( NonZeroU8Inner(u8), NonZeroU16Inner(u16), NonZeroU32Inner(u32), NonZeroU64Inner(u64), NonZeroU128Inner(u128), NonZeroUsizeInner(usize), NonZeroI8Inner(i8), NonZeroI16Inner(i16), NonZeroI32Inner(i32), NonZeroI64Inner(i64), NonZeroI128Inner(i128), NonZeroIsizeInner(isize), NonZeroCharInner(char), ); /// A value that is known not to equal zero. /// /// This enables some memory layout optimization. /// For example, `Option>` is the same size as `u32`: /// /// ``` /// use core::{num::NonZero}; /// /// assert_eq!(size_of::>>(), size_of::()); /// ``` /// /// # Layout /// /// `NonZero` is guaranteed to have the same layout and bit validity as `T` /// with the exception that the all-zero bit pattern is invalid. /// `Option>` is guaranteed to be compatible with `T`, including in /// FFI. /// /// Thanks to the [null pointer optimization], `NonZero` and /// `Option>` are guaranteed to have the same size and alignment: /// /// ``` /// use std::num::NonZero; /// /// assert_eq!(size_of::>(), size_of::>>()); /// assert_eq!(align_of::>(), align_of::>>()); /// ``` /// /// [null pointer optimization]: crate::option#representation /// /// # Note on generic usage /// /// `NonZero` can only be used with some standard library primitive types /// (such as `u8`, `i32`, and etc.). The type parameter `T` must implement the /// internal trait [`ZeroablePrimitive`], which is currently permanently unstable /// and cannot be implemented by users. Therefore, you cannot use `NonZero` /// with your own types, nor can you implement traits for all `NonZero`, /// only for concrete types. #[stable(feature = "generic_nonzero", since = "1.79.0")] #[repr(transparent)] #[rustc_nonnull_optimization_guaranteed] #[rustc_diagnostic_item = "NonZero"] pub struct NonZero(T::NonZeroInner); macro_rules! impl_nonzero_fmt { ($(#[$Attribute:meta] $Trait:ident)*) => { $( #[$Attribute] impl fmt::$Trait for NonZero where T: ZeroablePrimitive + fmt::$Trait, { #[inline] fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { self.get().fmt(f) } } )* }; } impl_nonzero_fmt! { #[stable(feature = "nonzero", since = "1.28.0")] Debug #[stable(feature = "nonzero", since = "1.28.0")] Display #[stable(feature = "nonzero", since = "1.28.0")] Binary #[stable(feature = "nonzero", since = "1.28.0")] Octal #[stable(feature = "nonzero", since = "1.28.0")] LowerHex #[stable(feature = "nonzero", since = "1.28.0")] UpperHex #[stable(feature = "nonzero_fmt_exp", since = "1.84.0")] LowerExp #[stable(feature = "nonzero_fmt_exp", since = "1.84.0")] UpperExp } macro_rules! impl_nonzero_auto_trait { (unsafe $Trait:ident) => { #[stable(feature = "nonzero", since = "1.28.0")] unsafe impl $Trait for NonZero where T: ZeroablePrimitive + $Trait {} }; ($Trait:ident) => { #[stable(feature = "nonzero", since = "1.28.0")] impl $Trait for NonZero where T: ZeroablePrimitive + $Trait {} }; } // Implement auto-traits manually based on `T` to avoid docs exposing // the `ZeroablePrimitive::NonZeroInner` implementation detail. impl_nonzero_auto_trait!(unsafe Freeze); impl_nonzero_auto_trait!(RefUnwindSafe); impl_nonzero_auto_trait!(unsafe Send); impl_nonzero_auto_trait!(unsafe Sync); impl_nonzero_auto_trait!(Unpin); impl_nonzero_auto_trait!(UnwindSafe); #[stable(feature = "nonzero", since = "1.28.0")] impl Clone for NonZero where T: ZeroablePrimitive, { #[inline] fn clone(&self) -> Self { *self } } #[unstable(feature = "ergonomic_clones", issue = "132290")] impl UseCloned for NonZero where T: ZeroablePrimitive {} #[stable(feature = "nonzero", since = "1.28.0")] impl Copy for NonZero where T: ZeroablePrimitive {} #[stable(feature = "nonzero", since = "1.28.0")] #[rustc_const_unstable(feature = "const_cmp", issue = "143800")] impl const PartialEq for NonZero where T: ZeroablePrimitive + [const] PartialEq, { #[inline] fn eq(&self, other: &Self) -> bool { self.get() == other.get() } #[inline] fn ne(&self, other: &Self) -> bool { self.get() != other.get() } } #[unstable(feature = "structural_match", issue = "31434")] impl StructuralPartialEq for NonZero where T: ZeroablePrimitive + StructuralPartialEq {} #[stable(feature = "nonzero", since = "1.28.0")] impl Eq for NonZero where T: ZeroablePrimitive + Eq {} #[stable(feature = "nonzero", since = "1.28.0")] impl PartialOrd for NonZero where T: ZeroablePrimitive + PartialOrd, { #[inline] fn partial_cmp(&self, other: &Self) -> Option { self.get().partial_cmp(&other.get()) } #[inline] fn lt(&self, other: &Self) -> bool { self.get() < other.get() } #[inline] fn le(&self, other: &Self) -> bool { self.get() <= other.get() } #[inline] fn gt(&self, other: &Self) -> bool { self.get() > other.get() } #[inline] fn ge(&self, other: &Self) -> bool { self.get() >= other.get() } } #[stable(feature = "nonzero", since = "1.28.0")] impl Ord for NonZero where T: ZeroablePrimitive + Ord, { #[inline] fn cmp(&self, other: &Self) -> Ordering { self.get().cmp(&other.get()) } #[inline] fn max(self, other: Self) -> Self { // SAFETY: The maximum of two non-zero values is still non-zero. unsafe { Self::new_unchecked(self.get().max(other.get())) } } #[inline] fn min(self, other: Self) -> Self { // SAFETY: The minimum of two non-zero values is still non-zero. unsafe { Self::new_unchecked(self.get().min(other.get())) } } #[inline] fn clamp(self, min: Self, max: Self) -> Self { // SAFETY: A non-zero value clamped between two non-zero values is still non-zero. unsafe { Self::new_unchecked(self.get().clamp(min.get(), max.get())) } } } #[stable(feature = "nonzero", since = "1.28.0")] impl Hash for NonZero where T: ZeroablePrimitive + Hash, { #[inline] fn hash(&self, state: &mut H) where H: Hasher, { self.get().hash(state) } } #[stable(feature = "from_nonzero", since = "1.31.0")] #[rustc_const_unstable(feature = "const_try", issue = "74935")] impl const From> for T where T: ZeroablePrimitive, { #[inline] fn from(nonzero: NonZero) -> Self { // Call `get` method to keep range information. nonzero.get() } } #[stable(feature = "nonzero_bitor", since = "1.45.0")] impl BitOr for NonZero where T: ZeroablePrimitive + BitOr, { type Output = Self; #[inline] fn bitor(self, rhs: Self) -> Self::Output { // SAFETY: Bitwise OR of two non-zero values is still non-zero. unsafe { Self::new_unchecked(self.get() | rhs.get()) } } } #[stable(feature = "nonzero_bitor", since = "1.45.0")] impl BitOr for NonZero where T: ZeroablePrimitive + BitOr, { type Output = Self; #[inline] fn bitor(self, rhs: T) -> Self::Output { // SAFETY: Bitwise OR of a non-zero value with anything is still non-zero. unsafe { Self::new_unchecked(self.get() | rhs) } } } #[stable(feature = "nonzero_bitor", since = "1.45.0")] impl BitOr> for T where T: ZeroablePrimitive + BitOr, { type Output = NonZero; #[inline] fn bitor(self, rhs: NonZero) -> Self::Output { // SAFETY: Bitwise OR of anything with a non-zero value is still non-zero. unsafe { NonZero::new_unchecked(self | rhs.get()) } } } #[stable(feature = "nonzero_bitor", since = "1.45.0")] impl BitOrAssign for NonZero where T: ZeroablePrimitive, Self: BitOr, { #[inline] fn bitor_assign(&mut self, rhs: Self) { *self = *self | rhs; } } #[stable(feature = "nonzero_bitor", since = "1.45.0")] impl BitOrAssign for NonZero where T: ZeroablePrimitive, Self: BitOr, { #[inline] fn bitor_assign(&mut self, rhs: T) { *self = *self | rhs; } } impl NonZero where T: ZeroablePrimitive, { /// Creates a non-zero if the given value is not zero. #[stable(feature = "nonzero", since = "1.28.0")] #[rustc_const_stable(feature = "const_nonzero_int_methods", since = "1.47.0")] #[must_use] #[inline] pub const fn new(n: T) -> Option { // SAFETY: Memory layout optimization guarantees that `Option>` has // the same layout and size as `T`, with `0` representing `None`. unsafe { intrinsics::transmute_unchecked(n) } } /// Creates a non-zero without checking whether the value is non-zero. /// This results in undefined behavior if the value is zero. /// /// # Safety /// /// The value must not be zero. #[stable(feature = "nonzero", since = "1.28.0")] #[rustc_const_stable(feature = "nonzero", since = "1.28.0")] #[must_use] #[inline] #[track_caller] pub const unsafe fn new_unchecked(n: T) -> Self { match Self::new(n) { Some(n) => n, None => { // SAFETY: The caller guarantees that `n` is non-zero, so this is unreachable. unsafe { ub_checks::assert_unsafe_precondition!( check_language_ub, "NonZero::new_unchecked requires the argument to be non-zero", () => false, ); intrinsics::unreachable() } } } } /// Converts a reference to a non-zero mutable reference /// if the referenced value is not zero. #[unstable(feature = "nonzero_from_mut", issue = "106290")] #[must_use] #[inline] pub fn from_mut(n: &mut T) -> Option<&mut Self> { // SAFETY: Memory layout optimization guarantees that `Option>` has // the same layout and size as `T`, with `0` representing `None`. let opt_n = unsafe { &mut *(ptr::from_mut(n).cast::>()) }; opt_n.as_mut() } /// Converts a mutable reference to a non-zero mutable reference /// without checking whether the referenced value is non-zero. /// This results in undefined behavior if the referenced value is zero. /// /// # Safety /// /// The referenced value must not be zero. #[unstable(feature = "nonzero_from_mut", issue = "106290")] #[must_use] #[inline] #[track_caller] pub unsafe fn from_mut_unchecked(n: &mut T) -> &mut Self { match Self::from_mut(n) { Some(n) => n, None => { // SAFETY: The caller guarantees that `n` references a value that is non-zero, so this is unreachable. unsafe { ub_checks::assert_unsafe_precondition!( check_library_ub, "NonZero::from_mut_unchecked requires the argument to dereference as non-zero", () => false, ); intrinsics::unreachable() } } } } /// Returns the contained value as a primitive type. #[stable(feature = "nonzero", since = "1.28.0")] #[rustc_const_stable(feature = "const_nonzero_get", since = "1.34.0")] #[inline] pub const fn get(self) -> T { // Rustc can set range metadata only if it loads `self` from // memory somewhere. If the value of `self` was from by-value argument // of some not-inlined function, LLVM don't have range metadata // to understand that the value cannot be zero. // // Using the transmute `assume`s the range at runtime. // // Even once LLVM supports `!range` metadata for function arguments // (see ), this can't // be `.0` because MCP#807 bans field-projecting into `scalar_valid_range` // types, and it arguably wouldn't want to be anyway because if this is // MIR-inlined, there's no opportunity to put that argument metadata anywhere. // // The good answer here will eventually be pattern types, which will hopefully // allow it to go back to `.0`, maybe with a cast of some sort. // // SAFETY: `ZeroablePrimitive` guarantees that the size and bit validity // of `.0` is such that this transmute is sound. unsafe { intrinsics::transmute_unchecked(self) } } } macro_rules! nonzero_integer { ( #[$stability:meta] Self = $Ty:ident, Primitive = $signedness:ident $Int:ident, SignedPrimitive = $Sint:ty, UnsignedPrimitive = $Uint:ty, // Used in doc comments. rot = $rot:literal, rot_op = $rot_op:literal, rot_result = $rot_result:literal, swap_op = $swap_op:literal, swapped = $swapped:literal, reversed = $reversed:literal, leading_zeros_test = $leading_zeros_test:expr, ) => { #[doc = sign_dependent_expr!{ $signedness ? if signed { concat!("An [`", stringify!($Int), "`] that is known not to equal zero.") } if unsigned { concat!("A [`", stringify!($Int), "`] that is known not to equal zero.") } }] /// /// This enables some memory layout optimization. #[doc = concat!("For example, `Option<", stringify!($Ty), ">` is the same size as `", stringify!($Int), "`:")] /// /// ```rust #[doc = concat!("assert_eq!(size_of::>(), size_of::<", stringify!($Int), ">());")] /// ``` /// /// # Layout /// #[doc = concat!("`", stringify!($Ty), "` is guaranteed to have the same layout and bit validity as `", stringify!($Int), "`")] /// with the exception that `0` is not a valid instance. #[doc = concat!("`Option<", stringify!($Ty), ">` is guaranteed to be compatible with `", stringify!($Int), "`,")] /// including in FFI. /// /// Thanks to the [null pointer optimization], #[doc = concat!("`", stringify!($Ty), "` and `Option<", stringify!($Ty), ">`")] /// are guaranteed to have the same size and alignment: /// /// ``` #[doc = concat!("use std::num::", stringify!($Ty), ";")] /// #[doc = concat!("assert_eq!(size_of::<", stringify!($Ty), ">(), size_of::>());")] #[doc = concat!("assert_eq!(align_of::<", stringify!($Ty), ">(), align_of::>());")] /// ``` /// /// [null pointer optimization]: crate::option#representation #[$stability] pub type $Ty = NonZero<$Int>; impl NonZero<$Int> { /// The size of this non-zero integer type in bits. /// #[doc = concat!("This value is equal to [`", stringify!($Int), "::BITS`].")] /// /// # Examples /// /// ``` /// # use std::num::NonZero; /// # #[doc = concat!("assert_eq!(NonZero::<", stringify!($Int), ">::BITS, ", stringify!($Int), "::BITS);")] /// ``` #[stable(feature = "nonzero_bits", since = "1.67.0")] pub const BITS: u32 = <$Int>::BITS; /// Returns the number of leading zeros in the binary representation of `self`. /// /// On many architectures, this function can perform better than `leading_zeros()` on the underlying integer type, as special handling of zero can be avoided. /// /// # Examples /// /// ``` /// # use std::num::NonZero; /// # /// # fn main() { test().unwrap(); } /// # fn test() -> Option<()> { #[doc = concat!("let n = NonZero::<", stringify!($Int), ">::new(", $leading_zeros_test, ")?;")] /// /// assert_eq!(n.leading_zeros(), 0); /// # Some(()) /// # } /// ``` #[stable(feature = "nonzero_leading_trailing_zeros", since = "1.53.0")] #[rustc_const_stable(feature = "nonzero_leading_trailing_zeros", since = "1.53.0")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline] pub const fn leading_zeros(self) -> u32 { // SAFETY: since `self` cannot be zero, it is safe to call `ctlz_nonzero`. unsafe { intrinsics::ctlz_nonzero(self.get() as $Uint) } } /// Returns the number of trailing zeros in the binary representation /// of `self`. /// /// On many architectures, this function can perform better than `trailing_zeros()` on the underlying integer type, as special handling of zero can be avoided. /// /// # Examples /// /// ``` /// # use std::num::NonZero; /// # /// # fn main() { test().unwrap(); } /// # fn test() -> Option<()> { #[doc = concat!("let n = NonZero::<", stringify!($Int), ">::new(0b0101000)?;")] /// /// assert_eq!(n.trailing_zeros(), 3); /// # Some(()) /// # } /// ``` #[stable(feature = "nonzero_leading_trailing_zeros", since = "1.53.0")] #[rustc_const_stable(feature = "nonzero_leading_trailing_zeros", since = "1.53.0")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline] pub const fn trailing_zeros(self) -> u32 { // SAFETY: since `self` cannot be zero, it is safe to call `cttz_nonzero`. unsafe { intrinsics::cttz_nonzero(self.get() as $Uint) } } /// Returns `self` with only the most significant bit set. /// /// # Example /// /// ``` /// #![feature(isolate_most_least_significant_one)] /// /// # use core::num::NonZero; /// # fn main() { test().unwrap(); } /// # fn test() -> Option<()> { #[doc = concat!("let a = NonZero::<", stringify!($Int), ">::new(0b_01100100)?;")] #[doc = concat!("let b = NonZero::<", stringify!($Int), ">::new(0b_01000000)?;")] /// /// assert_eq!(a.isolate_highest_one(), b); /// # Some(()) /// # } /// ``` #[unstable(feature = "isolate_most_least_significant_one", issue = "136909")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline(always)] pub const fn isolate_highest_one(self) -> Self { let n = self.get() & (((1 as $Int) << (<$Int>::BITS - 1)).wrapping_shr(self.leading_zeros())); // SAFETY: // `self` is non-zero, so masking to preserve only the most // significant set bit will result in a non-zero `n`. unsafe { NonZero::new_unchecked(n) } } /// Returns `self` with only the least significant bit set. /// /// # Example /// /// ``` /// #![feature(isolate_most_least_significant_one)] /// /// # use core::num::NonZero; /// # fn main() { test().unwrap(); } /// # fn test() -> Option<()> { #[doc = concat!("let a = NonZero::<", stringify!($Int), ">::new(0b_01100100)?;")] #[doc = concat!("let b = NonZero::<", stringify!($Int), ">::new(0b_00000100)?;")] /// /// assert_eq!(a.isolate_lowest_one(), b); /// # Some(()) /// # } /// ``` #[unstable(feature = "isolate_most_least_significant_one", issue = "136909")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline(always)] pub const fn isolate_lowest_one(self) -> Self { let n = self.get(); let n = n & n.wrapping_neg(); // SAFETY: `self` is non-zero, so `self` with only its least // significant set bit will remain non-zero. unsafe { NonZero::new_unchecked(n) } } /// Returns the number of ones in the binary representation of `self`. /// /// # Examples /// /// ``` /// # use std::num::NonZero; /// # /// # fn main() { test().unwrap(); } /// # fn test() -> Option<()> { #[doc = concat!("let a = NonZero::<", stringify!($Int), ">::new(0b100_0000)?;")] #[doc = concat!("let b = NonZero::<", stringify!($Int), ">::new(0b100_0011)?;")] /// /// assert_eq!(a.count_ones(), NonZero::new(1)?); /// assert_eq!(b.count_ones(), NonZero::new(3)?); /// # Some(()) /// # } /// ``` /// #[stable(feature = "non_zero_count_ones", since = "1.86.0")] #[rustc_const_stable(feature = "non_zero_count_ones", since = "1.86.0")] #[doc(alias = "popcount")] #[doc(alias = "popcnt")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline(always)] pub const fn count_ones(self) -> NonZero { // SAFETY: // `self` is non-zero, which means it has at least one bit set, which means // that the result of `count_ones` is non-zero. unsafe { NonZero::new_unchecked(self.get().count_ones()) } } /// Shifts the bits to the left by a specified amount, `n`, /// wrapping the truncated bits to the end of the resulting integer. /// /// Please note this isn't the same operation as the `<<` shifting operator! /// /// # Examples /// /// ``` /// #![feature(nonzero_bitwise)] /// # use std::num::NonZero; /// # /// # fn main() { test().unwrap(); } /// # fn test() -> Option<()> { #[doc = concat!("let n = NonZero::new(", $rot_op, stringify!($Int), ")?;")] #[doc = concat!("let m = NonZero::new(", $rot_result, ")?;")] /// #[doc = concat!("assert_eq!(n.rotate_left(", $rot, "), m);")] /// # Some(()) /// # } /// ``` #[unstable(feature = "nonzero_bitwise", issue = "128281")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline(always)] pub const fn rotate_left(self, n: u32) -> Self { let result = self.get().rotate_left(n); // SAFETY: Rotating bits preserves the property int > 0. unsafe { Self::new_unchecked(result) } } /// Shifts the bits to the right by a specified amount, `n`, /// wrapping the truncated bits to the beginning of the resulting /// integer. /// /// Please note this isn't the same operation as the `>>` shifting operator! /// /// # Examples /// /// ``` /// #![feature(nonzero_bitwise)] /// # use std::num::NonZero; /// # /// # fn main() { test().unwrap(); } /// # fn test() -> Option<()> { #[doc = concat!("let n = NonZero::new(", $rot_result, stringify!($Int), ")?;")] #[doc = concat!("let m = NonZero::new(", $rot_op, ")?;")] /// #[doc = concat!("assert_eq!(n.rotate_right(", $rot, "), m);")] /// # Some(()) /// # } /// ``` #[unstable(feature = "nonzero_bitwise", issue = "128281")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline(always)] pub const fn rotate_right(self, n: u32) -> Self { let result = self.get().rotate_right(n); // SAFETY: Rotating bits preserves the property int > 0. unsafe { Self::new_unchecked(result) } } /// Reverses the byte order of the integer. /// /// # Examples /// /// ``` /// #![feature(nonzero_bitwise)] /// # use std::num::NonZero; /// # /// # fn main() { test().unwrap(); } /// # fn test() -> Option<()> { #[doc = concat!("let n = NonZero::new(", $swap_op, stringify!($Int), ")?;")] /// let m = n.swap_bytes(); /// #[doc = concat!("assert_eq!(m, NonZero::new(", $swapped, ")?);")] /// # Some(()) /// # } /// ``` #[unstable(feature = "nonzero_bitwise", issue = "128281")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline(always)] pub const fn swap_bytes(self) -> Self { let result = self.get().swap_bytes(); // SAFETY: Shuffling bytes preserves the property int > 0. unsafe { Self::new_unchecked(result) } } /// Reverses the order of bits in the integer. The least significant bit becomes the most significant bit, /// second least-significant bit becomes second most-significant bit, etc. /// /// # Examples /// /// ``` /// #![feature(nonzero_bitwise)] /// # use std::num::NonZero; /// # /// # fn main() { test().unwrap(); } /// # fn test() -> Option<()> { #[doc = concat!("let n = NonZero::new(", $swap_op, stringify!($Int), ")?;")] /// let m = n.reverse_bits(); /// #[doc = concat!("assert_eq!(m, NonZero::new(", $reversed, ")?);")] /// # Some(()) /// # } /// ``` #[unstable(feature = "nonzero_bitwise", issue = "128281")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline(always)] pub const fn reverse_bits(self) -> Self { let result = self.get().reverse_bits(); // SAFETY: Reversing bits preserves the property int > 0. unsafe { Self::new_unchecked(result) } } /// Converts an integer from big endian to the target's endianness. /// /// On big endian this is a no-op. On little endian the bytes are /// swapped. /// /// # Examples /// /// ``` /// #![feature(nonzero_bitwise)] /// # use std::num::NonZero; #[doc = concat!("use std::num::", stringify!($Ty), ";")] /// # /// # fn main() { test().unwrap(); } /// # fn test() -> Option<()> { #[doc = concat!("let n = NonZero::new(0x1A", stringify!($Int), ")?;")] /// /// if cfg!(target_endian = "big") { #[doc = concat!(" assert_eq!(", stringify!($Ty), "::from_be(n), n)")] /// } else { #[doc = concat!(" assert_eq!(", stringify!($Ty), "::from_be(n), n.swap_bytes())")] /// } /// # Some(()) /// # } /// ``` #[unstable(feature = "nonzero_bitwise", issue = "128281")] #[must_use] #[inline(always)] pub const fn from_be(x: Self) -> Self { let result = $Int::from_be(x.get()); // SAFETY: Shuffling bytes preserves the property int > 0. unsafe { Self::new_unchecked(result) } } /// Converts an integer from little endian to the target's endianness. /// /// On little endian this is a no-op. On big endian the bytes are /// swapped. /// /// # Examples /// /// ``` /// #![feature(nonzero_bitwise)] /// # use std::num::NonZero; #[doc = concat!("use std::num::", stringify!($Ty), ";")] /// # /// # fn main() { test().unwrap(); } /// # fn test() -> Option<()> { #[doc = concat!("let n = NonZero::new(0x1A", stringify!($Int), ")?;")] /// /// if cfg!(target_endian = "little") { #[doc = concat!(" assert_eq!(", stringify!($Ty), "::from_le(n), n)")] /// } else { #[doc = concat!(" assert_eq!(", stringify!($Ty), "::from_le(n), n.swap_bytes())")] /// } /// # Some(()) /// # } /// ``` #[unstable(feature = "nonzero_bitwise", issue = "128281")] #[must_use] #[inline(always)] pub const fn from_le(x: Self) -> Self { let result = $Int::from_le(x.get()); // SAFETY: Shuffling bytes preserves the property int > 0. unsafe { Self::new_unchecked(result) } } /// Converts `self` to big endian from the target's endianness. /// /// On big endian this is a no-op. On little endian the bytes are /// swapped. /// /// # Examples /// /// ``` /// #![feature(nonzero_bitwise)] /// # use std::num::NonZero; /// # /// # fn main() { test().unwrap(); } /// # fn test() -> Option<()> { #[doc = concat!("let n = NonZero::new(0x1A", stringify!($Int), ")?;")] /// /// if cfg!(target_endian = "big") { /// assert_eq!(n.to_be(), n) /// } else { /// assert_eq!(n.to_be(), n.swap_bytes()) /// } /// # Some(()) /// # } /// ``` #[unstable(feature = "nonzero_bitwise", issue = "128281")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline(always)] pub const fn to_be(self) -> Self { let result = self.get().to_be(); // SAFETY: Shuffling bytes preserves the property int > 0. unsafe { Self::new_unchecked(result) } } /// Converts `self` to little endian from the target's endianness. /// /// On little endian this is a no-op. On big endian the bytes are /// swapped. /// /// # Examples /// /// ``` /// #![feature(nonzero_bitwise)] /// # use std::num::NonZero; /// # /// # fn main() { test().unwrap(); } /// # fn test() -> Option<()> { #[doc = concat!("let n = NonZero::new(0x1A", stringify!($Int), ")?;")] /// /// if cfg!(target_endian = "little") { /// assert_eq!(n.to_le(), n) /// } else { /// assert_eq!(n.to_le(), n.swap_bytes()) /// } /// # Some(()) /// # } /// ``` #[unstable(feature = "nonzero_bitwise", issue = "128281")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline(always)] pub const fn to_le(self) -> Self { let result = self.get().to_le(); // SAFETY: Shuffling bytes preserves the property int > 0. unsafe { Self::new_unchecked(result) } } nonzero_integer_signedness_dependent_methods! { Primitive = $signedness $Int, SignedPrimitive = $Sint, UnsignedPrimitive = $Uint, } /// Multiplies two non-zero integers together. /// Checks for overflow and returns [`None`] on overflow. /// As a consequence, the result cannot wrap to zero. /// /// # Examples /// /// ``` /// # use std::num::NonZero; /// # /// # fn main() { test().unwrap(); } /// # fn test() -> Option<()> { #[doc = concat!("let two = NonZero::new(2", stringify!($Int), ")?;")] #[doc = concat!("let four = NonZero::new(4", stringify!($Int), ")?;")] #[doc = concat!("let max = NonZero::new(", stringify!($Int), "::MAX)?;")] /// /// assert_eq!(Some(four), two.checked_mul(two)); /// assert_eq!(None, max.checked_mul(two)); /// # Some(()) /// # } /// ``` #[stable(feature = "nonzero_checked_ops", since = "1.64.0")] #[rustc_const_stable(feature = "const_nonzero_checked_ops", since = "1.64.0")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline] pub const fn checked_mul(self, other: Self) -> Option { if let Some(result) = self.get().checked_mul(other.get()) { // SAFETY: // - `checked_mul` returns `None` on overflow // - `self` and `other` are non-zero // - the only way to get zero from a multiplication without overflow is for one // of the sides to be zero // // So the result cannot be zero. Some(unsafe { Self::new_unchecked(result) }) } else { None } } /// Multiplies two non-zero integers together. #[doc = concat!("Return [`NonZero::<", stringify!($Int), ">::MAX`] on overflow.")] /// /// # Examples /// /// ``` /// # use std::num::NonZero; /// # /// # fn main() { test().unwrap(); } /// # fn test() -> Option<()> { #[doc = concat!("let two = NonZero::new(2", stringify!($Int), ")?;")] #[doc = concat!("let four = NonZero::new(4", stringify!($Int), ")?;")] #[doc = concat!("let max = NonZero::new(", stringify!($Int), "::MAX)?;")] /// /// assert_eq!(four, two.saturating_mul(two)); /// assert_eq!(max, four.saturating_mul(max)); /// # Some(()) /// # } /// ``` #[stable(feature = "nonzero_checked_ops", since = "1.64.0")] #[rustc_const_stable(feature = "const_nonzero_checked_ops", since = "1.64.0")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline] pub const fn saturating_mul(self, other: Self) -> Self { // SAFETY: // - `saturating_mul` returns `u*::MAX`/`i*::MAX`/`i*::MIN` on overflow/underflow, // all of which are non-zero // - `self` and `other` are non-zero // - the only way to get zero from a multiplication without overflow is for one // of the sides to be zero // // So the result cannot be zero. unsafe { Self::new_unchecked(self.get().saturating_mul(other.get())) } } /// Multiplies two non-zero integers together, /// assuming overflow cannot occur. /// Overflow is unchecked, and it is undefined behavior to overflow /// *even if the result would wrap to a non-zero value*. /// The behavior is undefined as soon as #[doc = sign_dependent_expr!{ $signedness ? if signed { concat!("`self * rhs > ", stringify!($Int), "::MAX`, ", "or `self * rhs < ", stringify!($Int), "::MIN`.") } if unsigned { concat!("`self * rhs > ", stringify!($Int), "::MAX`.") } }] /// /// # Examples /// /// ``` /// #![feature(nonzero_ops)] /// /// # use std::num::NonZero; /// # /// # fn main() { test().unwrap(); } /// # fn test() -> Option<()> { #[doc = concat!("let two = NonZero::new(2", stringify!($Int), ")?;")] #[doc = concat!("let four = NonZero::new(4", stringify!($Int), ")?;")] /// /// assert_eq!(four, unsafe { two.unchecked_mul(two) }); /// # Some(()) /// # } /// ``` #[unstable(feature = "nonzero_ops", issue = "84186")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline] pub const unsafe fn unchecked_mul(self, other: Self) -> Self { // SAFETY: The caller ensures there is no overflow. unsafe { Self::new_unchecked(self.get().unchecked_mul(other.get())) } } /// Raises non-zero value to an integer power. /// Checks for overflow and returns [`None`] on overflow. /// As a consequence, the result cannot wrap to zero. /// /// # Examples /// /// ``` /// # use std::num::NonZero; /// # /// # fn main() { test().unwrap(); } /// # fn test() -> Option<()> { #[doc = concat!("let three = NonZero::new(3", stringify!($Int), ")?;")] #[doc = concat!("let twenty_seven = NonZero::new(27", stringify!($Int), ")?;")] #[doc = concat!("let half_max = NonZero::new(", stringify!($Int), "::MAX / 2)?;")] /// /// assert_eq!(Some(twenty_seven), three.checked_pow(3)); /// assert_eq!(None, half_max.checked_pow(3)); /// # Some(()) /// # } /// ``` #[stable(feature = "nonzero_checked_ops", since = "1.64.0")] #[rustc_const_stable(feature = "const_nonzero_checked_ops", since = "1.64.0")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline] pub const fn checked_pow(self, other: u32) -> Option { if let Some(result) = self.get().checked_pow(other) { // SAFETY: // - `checked_pow` returns `None` on overflow/underflow // - `self` is non-zero // - the only way to get zero from an exponentiation without overflow is // for base to be zero // // So the result cannot be zero. Some(unsafe { Self::new_unchecked(result) }) } else { None } } /// Raise non-zero value to an integer power. #[doc = sign_dependent_expr!{ $signedness ? if signed { concat!("Return [`NonZero::<", stringify!($Int), ">::MIN`] ", "or [`NonZero::<", stringify!($Int), ">::MAX`] on overflow.") } if unsigned { concat!("Return [`NonZero::<", stringify!($Int), ">::MAX`] on overflow.") } }] /// /// # Examples /// /// ``` /// # use std::num::NonZero; /// # /// # fn main() { test().unwrap(); } /// # fn test() -> Option<()> { #[doc = concat!("let three = NonZero::new(3", stringify!($Int), ")?;")] #[doc = concat!("let twenty_seven = NonZero::new(27", stringify!($Int), ")?;")] #[doc = concat!("let max = NonZero::new(", stringify!($Int), "::MAX)?;")] /// /// assert_eq!(twenty_seven, three.saturating_pow(3)); /// assert_eq!(max, max.saturating_pow(3)); /// # Some(()) /// # } /// ``` #[stable(feature = "nonzero_checked_ops", since = "1.64.0")] #[rustc_const_stable(feature = "const_nonzero_checked_ops", since = "1.64.0")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline] pub const fn saturating_pow(self, other: u32) -> Self { // SAFETY: // - `saturating_pow` returns `u*::MAX`/`i*::MAX`/`i*::MIN` on overflow/underflow, // all of which are non-zero // - `self` is non-zero // - the only way to get zero from an exponentiation without overflow is // for base to be zero // // So the result cannot be zero. unsafe { Self::new_unchecked(self.get().saturating_pow(other)) } } } #[stable(feature = "nonzero_parse", since = "1.35.0")] impl FromStr for NonZero<$Int> { type Err = ParseIntError; fn from_str(src: &str) -> Result { Self::new(<$Int>::from_str_radix(src, 10)?) .ok_or(ParseIntError { kind: IntErrorKind::Zero }) } } nonzero_integer_signedness_dependent_impls!($signedness $Int); }; ( Self = $Ty:ident, Primitive = unsigned $Int:ident, SignedPrimitive = $Sint:ident, rot = $rot:literal, rot_op = $rot_op:literal, rot_result = $rot_result:literal, swap_op = $swap_op:literal, swapped = $swapped:literal, reversed = $reversed:literal, $(,)? ) => { nonzero_integer! { #[stable(feature = "nonzero", since = "1.28.0")] Self = $Ty, Primitive = unsigned $Int, SignedPrimitive = $Sint, UnsignedPrimitive = $Int, rot = $rot, rot_op = $rot_op, rot_result = $rot_result, swap_op = $swap_op, swapped = $swapped, reversed = $reversed, leading_zeros_test = concat!(stringify!($Int), "::MAX"), } }; ( Self = $Ty:ident, Primitive = signed $Int:ident, UnsignedPrimitive = $Uint:ident, rot = $rot:literal, rot_op = $rot_op:literal, rot_result = $rot_result:literal, swap_op = $swap_op:literal, swapped = $swapped:literal, reversed = $reversed:literal, ) => { nonzero_integer! { #[stable(feature = "signed_nonzero", since = "1.34.0")] Self = $Ty, Primitive = signed $Int, SignedPrimitive = $Int, UnsignedPrimitive = $Uint, rot = $rot, rot_op = $rot_op, rot_result = $rot_result, swap_op = $swap_op, swapped = $swapped, reversed = $reversed, leading_zeros_test = concat!("-1", stringify!($Int)), } }; } macro_rules! nonzero_integer_signedness_dependent_impls { // Impls for unsigned nonzero types only. (unsigned $Int:ty) => { #[stable(feature = "nonzero_div", since = "1.51.0")] impl Div> for $Int { type Output = $Int; /// Same as `self / other.get()`, but because `other` is a `NonZero<_>`, /// there's never a runtime check for division-by-zero. /// /// This operation rounds towards zero, truncating any fractional /// part of the exact result, and cannot panic. #[doc(alias = "unchecked_div")] #[inline] fn div(self, other: NonZero<$Int>) -> $Int { // SAFETY: Division by zero is checked because `other` is non-zero, // and MIN/-1 is checked because `self` is an unsigned int. unsafe { intrinsics::unchecked_div(self, other.get()) } } } #[stable(feature = "nonzero_div_assign", since = "1.79.0")] impl DivAssign> for $Int { /// Same as `self /= other.get()`, but because `other` is a `NonZero<_>`, /// there's never a runtime check for division-by-zero. /// /// This operation rounds towards zero, truncating any fractional /// part of the exact result, and cannot panic. #[inline] fn div_assign(&mut self, other: NonZero<$Int>) { *self = *self / other; } } #[stable(feature = "nonzero_div", since = "1.51.0")] impl Rem> for $Int { type Output = $Int; /// This operation satisfies `n % d == n - (n / d) * d`, and cannot panic. #[inline] fn rem(self, other: NonZero<$Int>) -> $Int { // SAFETY: Remainder by zero is checked because `other` is non-zero, // and MIN/-1 is checked because `self` is an unsigned int. unsafe { intrinsics::unchecked_rem(self, other.get()) } } } #[stable(feature = "nonzero_div_assign", since = "1.79.0")] impl RemAssign> for $Int { /// This operation satisfies `n % d == n - (n / d) * d`, and cannot panic. #[inline] fn rem_assign(&mut self, other: NonZero<$Int>) { *self = *self % other; } } impl NonZero<$Int> { /// Calculates the quotient of `self` and `rhs`, rounding the result towards positive infinity. /// /// The result is guaranteed to be non-zero. /// /// # Examples /// /// ``` /// # #![feature(unsigned_nonzero_div_ceil)] /// # use std::num::NonZero; #[doc = concat!("let one = NonZero::new(1", stringify!($Int), ").unwrap();")] #[doc = concat!("let max = NonZero::new(", stringify!($Int), "::MAX).unwrap();")] /// assert_eq!(one.div_ceil(max), one); /// #[doc = concat!("let two = NonZero::new(2", stringify!($Int), ").unwrap();")] #[doc = concat!("let three = NonZero::new(3", stringify!($Int), ").unwrap();")] /// assert_eq!(three.div_ceil(two), two); /// ``` #[unstable(feature = "unsigned_nonzero_div_ceil", issue = "132968")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline] pub const fn div_ceil(self, rhs: Self) -> Self { let v = self.get().div_ceil(rhs.get()); // SAFETY: ceiled division of two positive integers can never be zero. unsafe { Self::new_unchecked(v) } } } }; // Impls for signed nonzero types only. (signed $Int:ty) => { #[stable(feature = "signed_nonzero_neg", since = "1.71.0")] impl Neg for NonZero<$Int> { type Output = Self; #[inline] fn neg(self) -> Self { // SAFETY: negation of nonzero cannot yield zero values. unsafe { Self::new_unchecked(self.get().neg()) } } } forward_ref_unop! { impl Neg, neg for NonZero<$Int>, #[stable(feature = "signed_nonzero_neg", since = "1.71.0")] } }; } #[rustfmt::skip] // https://github.com/rust-lang/rustfmt/issues/5974 macro_rules! nonzero_integer_signedness_dependent_methods { // Associated items for unsigned nonzero types only. ( Primitive = unsigned $Int:ident, SignedPrimitive = $Sint:ty, UnsignedPrimitive = $Uint:ty, ) => { /// The smallest value that can be represented by this non-zero /// integer type, 1. /// /// # Examples /// /// ``` /// # use std::num::NonZero; /// # #[doc = concat!("assert_eq!(NonZero::<", stringify!($Int), ">::MIN.get(), 1", stringify!($Int), ");")] /// ``` #[stable(feature = "nonzero_min_max", since = "1.70.0")] pub const MIN: Self = Self::new(1).unwrap(); /// The largest value that can be represented by this non-zero /// integer type, #[doc = concat!("equal to [`", stringify!($Int), "::MAX`].")] /// /// # Examples /// /// ``` /// # use std::num::NonZero; /// # #[doc = concat!("assert_eq!(NonZero::<", stringify!($Int), ">::MAX.get(), ", stringify!($Int), "::MAX);")] /// ``` #[stable(feature = "nonzero_min_max", since = "1.70.0")] pub const MAX: Self = Self::new(<$Int>::MAX).unwrap(); /// Adds an unsigned integer to a non-zero value. /// Checks for overflow and returns [`None`] on overflow. /// As a consequence, the result cannot wrap to zero. /// /// /// # Examples /// /// ``` /// # use std::num::NonZero; /// # /// # fn main() { test().unwrap(); } /// # fn test() -> Option<()> { #[doc = concat!("let one = NonZero::new(1", stringify!($Int), ")?;")] #[doc = concat!("let two = NonZero::new(2", stringify!($Int), ")?;")] #[doc = concat!("let max = NonZero::new(", stringify!($Int), "::MAX)?;")] /// /// assert_eq!(Some(two), one.checked_add(1)); /// assert_eq!(None, max.checked_add(1)); /// # Some(()) /// # } /// ``` #[stable(feature = "nonzero_checked_ops", since = "1.64.0")] #[rustc_const_stable(feature = "const_nonzero_checked_ops", since = "1.64.0")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline] pub const fn checked_add(self, other: $Int) -> Option { if let Some(result) = self.get().checked_add(other) { // SAFETY: // - `checked_add` returns `None` on overflow // - `self` is non-zero // - the only way to get zero from an addition without overflow is for both // sides to be zero // // So the result cannot be zero. Some(unsafe { Self::new_unchecked(result) }) } else { None } } /// Adds an unsigned integer to a non-zero value. #[doc = concat!("Return [`NonZero::<", stringify!($Int), ">::MAX`] on overflow.")] /// /// # Examples /// /// ``` /// # use std::num::NonZero; /// # /// # fn main() { test().unwrap(); } /// # fn test() -> Option<()> { #[doc = concat!("let one = NonZero::new(1", stringify!($Int), ")?;")] #[doc = concat!("let two = NonZero::new(2", stringify!($Int), ")?;")] #[doc = concat!("let max = NonZero::new(", stringify!($Int), "::MAX)?;")] /// /// assert_eq!(two, one.saturating_add(1)); /// assert_eq!(max, max.saturating_add(1)); /// # Some(()) /// # } /// ``` #[stable(feature = "nonzero_checked_ops", since = "1.64.0")] #[rustc_const_stable(feature = "const_nonzero_checked_ops", since = "1.64.0")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline] pub const fn saturating_add(self, other: $Int) -> Self { // SAFETY: // - `saturating_add` returns `u*::MAX` on overflow, which is non-zero // - `self` is non-zero // - the only way to get zero from an addition without overflow is for both // sides to be zero // // So the result cannot be zero. unsafe { Self::new_unchecked(self.get().saturating_add(other)) } } /// Adds an unsigned integer to a non-zero value, /// assuming overflow cannot occur. /// Overflow is unchecked, and it is undefined behavior to overflow /// *even if the result would wrap to a non-zero value*. /// The behavior is undefined as soon as #[doc = concat!("`self + rhs > ", stringify!($Int), "::MAX`.")] /// /// # Examples /// /// ``` /// #![feature(nonzero_ops)] /// /// # use std::num::NonZero; /// # /// # fn main() { test().unwrap(); } /// # fn test() -> Option<()> { #[doc = concat!("let one = NonZero::new(1", stringify!($Int), ")?;")] #[doc = concat!("let two = NonZero::new(2", stringify!($Int), ")?;")] /// /// assert_eq!(two, unsafe { one.unchecked_add(1) }); /// # Some(()) /// # } /// ``` #[unstable(feature = "nonzero_ops", issue = "84186")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline] pub const unsafe fn unchecked_add(self, other: $Int) -> Self { // SAFETY: The caller ensures there is no overflow. unsafe { Self::new_unchecked(self.get().unchecked_add(other)) } } /// Returns the smallest power of two greater than or equal to `self`. /// Checks for overflow and returns [`None`] /// if the next power of two is greater than the type’s maximum value. /// As a consequence, the result cannot wrap to zero. /// /// # Examples /// /// ``` /// # use std::num::NonZero; /// # /// # fn main() { test().unwrap(); } /// # fn test() -> Option<()> { #[doc = concat!("let two = NonZero::new(2", stringify!($Int), ")?;")] #[doc = concat!("let three = NonZero::new(3", stringify!($Int), ")?;")] #[doc = concat!("let four = NonZero::new(4", stringify!($Int), ")?;")] #[doc = concat!("let max = NonZero::new(", stringify!($Int), "::MAX)?;")] /// /// assert_eq!(Some(two), two.checked_next_power_of_two() ); /// assert_eq!(Some(four), three.checked_next_power_of_two() ); /// assert_eq!(None, max.checked_next_power_of_two() ); /// # Some(()) /// # } /// ``` #[stable(feature = "nonzero_checked_ops", since = "1.64.0")] #[rustc_const_stable(feature = "const_nonzero_checked_ops", since = "1.64.0")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline] pub const fn checked_next_power_of_two(self) -> Option { if let Some(nz) = self.get().checked_next_power_of_two() { // SAFETY: The next power of two is positive // and overflow is checked. Some(unsafe { Self::new_unchecked(nz) }) } else { None } } /// Returns the base 2 logarithm of the number, rounded down. /// /// This is the same operation as #[doc = concat!("[`", stringify!($Int), "::ilog2`],")] /// except that it has no failure cases to worry about /// since this value can never be zero. /// /// # Examples /// /// ``` /// # use std::num::NonZero; /// # /// # fn main() { test().unwrap(); } /// # fn test() -> Option<()> { #[doc = concat!("assert_eq!(NonZero::new(7", stringify!($Int), ")?.ilog2(), 2);")] #[doc = concat!("assert_eq!(NonZero::new(8", stringify!($Int), ")?.ilog2(), 3);")] #[doc = concat!("assert_eq!(NonZero::new(9", stringify!($Int), ")?.ilog2(), 3);")] /// # Some(()) /// # } /// ``` #[stable(feature = "int_log", since = "1.67.0")] #[rustc_const_stable(feature = "int_log", since = "1.67.0")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline] pub const fn ilog2(self) -> u32 { Self::BITS - 1 - self.leading_zeros() } /// Returns the base 10 logarithm of the number, rounded down. /// /// This is the same operation as #[doc = concat!("[`", stringify!($Int), "::ilog10`],")] /// except that it has no failure cases to worry about /// since this value can never be zero. /// /// # Examples /// /// ``` /// # use std::num::NonZero; /// # /// # fn main() { test().unwrap(); } /// # fn test() -> Option<()> { #[doc = concat!("assert_eq!(NonZero::new(99", stringify!($Int), ")?.ilog10(), 1);")] #[doc = concat!("assert_eq!(NonZero::new(100", stringify!($Int), ")?.ilog10(), 2);")] #[doc = concat!("assert_eq!(NonZero::new(101", stringify!($Int), ")?.ilog10(), 2);")] /// # Some(()) /// # } /// ``` #[stable(feature = "int_log", since = "1.67.0")] #[rustc_const_stable(feature = "int_log", since = "1.67.0")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline] pub const fn ilog10(self) -> u32 { super::int_log10::$Int(self.get()) } /// Calculates the midpoint (average) between `self` and `rhs`. /// /// `midpoint(a, b)` is `(a + b) >> 1` as if it were performed in a /// sufficiently-large signed integral type. This implies that the result is /// always rounded towards negative infinity and that no overflow will ever occur. /// /// # Examples /// /// ``` /// # use std::num::NonZero; /// # /// # fn main() { test().unwrap(); } /// # fn test() -> Option<()> { #[doc = concat!("let one = NonZero::new(1", stringify!($Int), ")?;")] #[doc = concat!("let two = NonZero::new(2", stringify!($Int), ")?;")] #[doc = concat!("let four = NonZero::new(4", stringify!($Int), ")?;")] /// /// assert_eq!(one.midpoint(four), two); /// assert_eq!(four.midpoint(one), two); /// # Some(()) /// # } /// ``` #[stable(feature = "num_midpoint", since = "1.85.0")] #[rustc_const_stable(feature = "num_midpoint", since = "1.85.0")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[doc(alias = "average_floor")] #[doc(alias = "average")] #[inline] pub const fn midpoint(self, rhs: Self) -> Self { // SAFETY: The only way to get `0` with midpoint is to have two opposite or // near opposite numbers: (-5, 5), (0, 1), (0, 0) which is impossible because // of the unsignedness of this number and also because `Self` is guaranteed to // never being 0. unsafe { Self::new_unchecked(self.get().midpoint(rhs.get())) } } /// Returns `true` if and only if `self == (1 << k)` for some `k`. /// /// On many architectures, this function can perform better than `is_power_of_two()` /// on the underlying integer type, as special handling of zero can be avoided. /// /// # Examples /// /// ``` /// # use std::num::NonZero; /// # /// # fn main() { test().unwrap(); } /// # fn test() -> Option<()> { #[doc = concat!("let eight = NonZero::new(8", stringify!($Int), ")?;")] /// assert!(eight.is_power_of_two()); #[doc = concat!("let ten = NonZero::new(10", stringify!($Int), ")?;")] /// assert!(!ten.is_power_of_two()); /// # Some(()) /// # } /// ``` #[must_use] #[stable(feature = "nonzero_is_power_of_two", since = "1.59.0")] #[rustc_const_stable(feature = "nonzero_is_power_of_two", since = "1.59.0")] #[inline] pub const fn is_power_of_two(self) -> bool { // LLVM 11 normalizes `unchecked_sub(x, 1) & x == 0` to the implementation seen here. // On the basic x86-64 target, this saves 3 instructions for the zero check. // On x86_64 with BMI1, being nonzero lets it codegen to `BLSR`, which saves an instruction // compared to the `POPCNT` implementation on the underlying integer type. intrinsics::ctpop(self.get()) < 2 } /// Returns the square root of the number, rounded down. /// /// # Examples /// /// ``` /// # use std::num::NonZero; /// # /// # fn main() { test().unwrap(); } /// # fn test() -> Option<()> { #[doc = concat!("let ten = NonZero::new(10", stringify!($Int), ")?;")] #[doc = concat!("let three = NonZero::new(3", stringify!($Int), ")?;")] /// /// assert_eq!(ten.isqrt(), three); /// # Some(()) /// # } /// ``` #[stable(feature = "isqrt", since = "1.84.0")] #[rustc_const_stable(feature = "isqrt", since = "1.84.0")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline] pub const fn isqrt(self) -> Self { let result = self.get().isqrt(); // SAFETY: Integer square root is a monotonically nondecreasing // function, which means that increasing the input will never cause // the output to decrease. Thus, since the input for nonzero // unsigned integers has a lower bound of 1, the lower bound of the // results will be sqrt(1), which is 1, so a result can't be zero. unsafe { Self::new_unchecked(result) } } /// Returns the bit pattern of `self` reinterpreted as a signed integer of the same size. /// /// # Examples /// /// ``` /// # use std::num::NonZero; /// #[doc = concat!("let n = NonZero::<", stringify!($Int), ">::MAX;")] /// #[doc = concat!("assert_eq!(n.cast_signed(), NonZero::new(-1", stringify!($Sint), ").unwrap());")] /// ``` #[stable(feature = "integer_sign_cast", since = "1.87.0")] #[rustc_const_stable(feature = "integer_sign_cast", since = "1.87.0")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline(always)] pub const fn cast_signed(self) -> NonZero<$Sint> { // SAFETY: `self.get()` can't be zero unsafe { NonZero::new_unchecked(self.get().cast_signed()) } } }; // Associated items for signed nonzero types only. ( Primitive = signed $Int:ident, SignedPrimitive = $Sint:ty, UnsignedPrimitive = $Uint:ty, ) => { /// The smallest value that can be represented by this non-zero /// integer type, #[doc = concat!("equal to [`", stringify!($Int), "::MIN`].")] /// /// Note: While most integer types are defined for every whole /// number between `MIN` and `MAX`, signed non-zero integers are /// a special case. They have a "gap" at 0. /// /// # Examples /// /// ``` /// # use std::num::NonZero; /// # #[doc = concat!("assert_eq!(NonZero::<", stringify!($Int), ">::MIN.get(), ", stringify!($Int), "::MIN);")] /// ``` #[stable(feature = "nonzero_min_max", since = "1.70.0")] pub const MIN: Self = Self::new(<$Int>::MIN).unwrap(); /// The largest value that can be represented by this non-zero /// integer type, #[doc = concat!("equal to [`", stringify!($Int), "::MAX`].")] /// /// Note: While most integer types are defined for every whole /// number between `MIN` and `MAX`, signed non-zero integers are /// a special case. They have a "gap" at 0. /// /// # Examples /// /// ``` /// # use std::num::NonZero; /// # #[doc = concat!("assert_eq!(NonZero::<", stringify!($Int), ">::MAX.get(), ", stringify!($Int), "::MAX);")] /// ``` #[stable(feature = "nonzero_min_max", since = "1.70.0")] pub const MAX: Self = Self::new(<$Int>::MAX).unwrap(); /// Computes the absolute value of self. #[doc = concat!("See [`", stringify!($Int), "::abs`]")] /// for documentation on overflow behavior. /// /// # Example /// /// ``` /// # use std::num::NonZero; /// # /// # fn main() { test().unwrap(); } /// # fn test() -> Option<()> { #[doc = concat!("let pos = NonZero::new(1", stringify!($Int), ")?;")] #[doc = concat!("let neg = NonZero::new(-1", stringify!($Int), ")?;")] /// /// assert_eq!(pos, pos.abs()); /// assert_eq!(pos, neg.abs()); /// # Some(()) /// # } /// ``` #[stable(feature = "nonzero_checked_ops", since = "1.64.0")] #[rustc_const_stable(feature = "const_nonzero_checked_ops", since = "1.64.0")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline] pub const fn abs(self) -> Self { // SAFETY: This cannot overflow to zero. unsafe { Self::new_unchecked(self.get().abs()) } } /// Checked absolute value. /// Checks for overflow and returns [`None`] if #[doc = concat!("`self == NonZero::<", stringify!($Int), ">::MIN`.")] /// The result cannot be zero. /// /// # Example /// /// ``` /// # use std::num::NonZero; /// # /// # fn main() { test().unwrap(); } /// # fn test() -> Option<()> { #[doc = concat!("let pos = NonZero::new(1", stringify!($Int), ")?;")] #[doc = concat!("let neg = NonZero::new(-1", stringify!($Int), ")?;")] #[doc = concat!("let min = NonZero::new(", stringify!($Int), "::MIN)?;")] /// /// assert_eq!(Some(pos), neg.checked_abs()); /// assert_eq!(None, min.checked_abs()); /// # Some(()) /// # } /// ``` #[stable(feature = "nonzero_checked_ops", since = "1.64.0")] #[rustc_const_stable(feature = "const_nonzero_checked_ops", since = "1.64.0")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline] pub const fn checked_abs(self) -> Option { if let Some(nz) = self.get().checked_abs() { // SAFETY: absolute value of nonzero cannot yield zero values. Some(unsafe { Self::new_unchecked(nz) }) } else { None } } /// Computes the absolute value of self, /// with overflow information, see #[doc = concat!("[`", stringify!($Int), "::overflowing_abs`].")] /// /// # Example /// /// ``` /// # use std::num::NonZero; /// # /// # fn main() { test().unwrap(); } /// # fn test() -> Option<()> { #[doc = concat!("let pos = NonZero::new(1", stringify!($Int), ")?;")] #[doc = concat!("let neg = NonZero::new(-1", stringify!($Int), ")?;")] #[doc = concat!("let min = NonZero::new(", stringify!($Int), "::MIN)?;")] /// /// assert_eq!((pos, false), pos.overflowing_abs()); /// assert_eq!((pos, false), neg.overflowing_abs()); /// assert_eq!((min, true), min.overflowing_abs()); /// # Some(()) /// # } /// ``` #[stable(feature = "nonzero_checked_ops", since = "1.64.0")] #[rustc_const_stable(feature = "const_nonzero_checked_ops", since = "1.64.0")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline] pub const fn overflowing_abs(self) -> (Self, bool) { let (nz, flag) = self.get().overflowing_abs(); ( // SAFETY: absolute value of nonzero cannot yield zero values. unsafe { Self::new_unchecked(nz) }, flag, ) } /// Saturating absolute value, see #[doc = concat!("[`", stringify!($Int), "::saturating_abs`].")] /// /// # Example /// /// ``` /// # use std::num::NonZero; /// # /// # fn main() { test().unwrap(); } /// # fn test() -> Option<()> { #[doc = concat!("let pos = NonZero::new(1", stringify!($Int), ")?;")] #[doc = concat!("let neg = NonZero::new(-1", stringify!($Int), ")?;")] #[doc = concat!("let min = NonZero::new(", stringify!($Int), "::MIN)?;")] #[doc = concat!("let min_plus = NonZero::new(", stringify!($Int), "::MIN + 1)?;")] #[doc = concat!("let max = NonZero::new(", stringify!($Int), "::MAX)?;")] /// /// assert_eq!(pos, pos.saturating_abs()); /// assert_eq!(pos, neg.saturating_abs()); /// assert_eq!(max, min.saturating_abs()); /// assert_eq!(max, min_plus.saturating_abs()); /// # Some(()) /// # } /// ``` #[stable(feature = "nonzero_checked_ops", since = "1.64.0")] #[rustc_const_stable(feature = "const_nonzero_checked_ops", since = "1.64.0")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline] pub const fn saturating_abs(self) -> Self { // SAFETY: absolute value of nonzero cannot yield zero values. unsafe { Self::new_unchecked(self.get().saturating_abs()) } } /// Wrapping absolute value, see #[doc = concat!("[`", stringify!($Int), "::wrapping_abs`].")] /// /// # Example /// /// ``` /// # use std::num::NonZero; /// # /// # fn main() { test().unwrap(); } /// # fn test() -> Option<()> { #[doc = concat!("let pos = NonZero::new(1", stringify!($Int), ")?;")] #[doc = concat!("let neg = NonZero::new(-1", stringify!($Int), ")?;")] #[doc = concat!("let min = NonZero::new(", stringify!($Int), "::MIN)?;")] #[doc = concat!("# let max = NonZero::new(", stringify!($Int), "::MAX)?;")] /// /// assert_eq!(pos, pos.wrapping_abs()); /// assert_eq!(pos, neg.wrapping_abs()); /// assert_eq!(min, min.wrapping_abs()); /// assert_eq!(max, (-max).wrapping_abs()); /// # Some(()) /// # } /// ``` #[stable(feature = "nonzero_checked_ops", since = "1.64.0")] #[rustc_const_stable(feature = "const_nonzero_checked_ops", since = "1.64.0")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline] pub const fn wrapping_abs(self) -> Self { // SAFETY: absolute value of nonzero cannot yield zero values. unsafe { Self::new_unchecked(self.get().wrapping_abs()) } } /// Computes the absolute value of self /// without any wrapping or panicking. /// /// # Example /// /// ``` /// # use std::num::NonZero; /// # /// # fn main() { test().unwrap(); } /// # fn test() -> Option<()> { #[doc = concat!("let u_pos = NonZero::new(1", stringify!($Uint), ")?;")] #[doc = concat!("let i_pos = NonZero::new(1", stringify!($Int), ")?;")] #[doc = concat!("let i_neg = NonZero::new(-1", stringify!($Int), ")?;")] #[doc = concat!("let i_min = NonZero::new(", stringify!($Int), "::MIN)?;")] #[doc = concat!("let u_max = NonZero::new(", stringify!($Uint), "::MAX / 2 + 1)?;")] /// /// assert_eq!(u_pos, i_pos.unsigned_abs()); /// assert_eq!(u_pos, i_neg.unsigned_abs()); /// assert_eq!(u_max, i_min.unsigned_abs()); /// # Some(()) /// # } /// ``` #[stable(feature = "nonzero_checked_ops", since = "1.64.0")] #[rustc_const_stable(feature = "const_nonzero_checked_ops", since = "1.64.0")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline] pub const fn unsigned_abs(self) -> NonZero<$Uint> { // SAFETY: absolute value of nonzero cannot yield zero values. unsafe { NonZero::new_unchecked(self.get().unsigned_abs()) } } /// Returns `true` if `self` is positive and `false` if the /// number is negative. /// /// # Example /// /// ``` /// # use std::num::NonZero; /// # /// # fn main() { test().unwrap(); } /// # fn test() -> Option<()> { #[doc = concat!("let pos_five = NonZero::new(5", stringify!($Int), ")?;")] #[doc = concat!("let neg_five = NonZero::new(-5", stringify!($Int), ")?;")] /// /// assert!(pos_five.is_positive()); /// assert!(!neg_five.is_positive()); /// # Some(()) /// # } /// ``` #[must_use] #[inline] #[stable(feature = "nonzero_negation_ops", since = "1.71.0")] #[rustc_const_stable(feature = "nonzero_negation_ops", since = "1.71.0")] pub const fn is_positive(self) -> bool { self.get().is_positive() } /// Returns `true` if `self` is negative and `false` if the /// number is positive. /// /// # Example /// /// ``` /// # use std::num::NonZero; /// # /// # fn main() { test().unwrap(); } /// # fn test() -> Option<()> { #[doc = concat!("let pos_five = NonZero::new(5", stringify!($Int), ")?;")] #[doc = concat!("let neg_five = NonZero::new(-5", stringify!($Int), ")?;")] /// /// assert!(neg_five.is_negative()); /// assert!(!pos_five.is_negative()); /// # Some(()) /// # } /// ``` #[must_use] #[inline] #[stable(feature = "nonzero_negation_ops", since = "1.71.0")] #[rustc_const_stable(feature = "nonzero_negation_ops", since = "1.71.0")] pub const fn is_negative(self) -> bool { self.get().is_negative() } /// Checked negation. Computes `-self`, #[doc = concat!("returning `None` if `self == NonZero::<", stringify!($Int), ">::MIN`.")] /// /// # Example /// /// ``` /// # use std::num::NonZero; /// # /// # fn main() { test().unwrap(); } /// # fn test() -> Option<()> { #[doc = concat!("let pos_five = NonZero::new(5", stringify!($Int), ")?;")] #[doc = concat!("let neg_five = NonZero::new(-5", stringify!($Int), ")?;")] #[doc = concat!("let min = NonZero::new(", stringify!($Int), "::MIN)?;")] /// /// assert_eq!(pos_five.checked_neg(), Some(neg_five)); /// assert_eq!(min.checked_neg(), None); /// # Some(()) /// # } /// ``` #[inline] #[stable(feature = "nonzero_negation_ops", since = "1.71.0")] #[rustc_const_stable(feature = "nonzero_negation_ops", since = "1.71.0")] pub const fn checked_neg(self) -> Option { if let Some(result) = self.get().checked_neg() { // SAFETY: negation of nonzero cannot yield zero values. return Some(unsafe { Self::new_unchecked(result) }); } None } /// Negates self, overflowing if this is equal to the minimum value. /// #[doc = concat!("See [`", stringify!($Int), "::overflowing_neg`]")] /// for documentation on overflow behavior. /// /// # Example /// /// ``` /// # use std::num::NonZero; /// # /// # fn main() { test().unwrap(); } /// # fn test() -> Option<()> { #[doc = concat!("let pos_five = NonZero::new(5", stringify!($Int), ")?;")] #[doc = concat!("let neg_five = NonZero::new(-5", stringify!($Int), ")?;")] #[doc = concat!("let min = NonZero::new(", stringify!($Int), "::MIN)?;")] /// /// assert_eq!(pos_five.overflowing_neg(), (neg_five, false)); /// assert_eq!(min.overflowing_neg(), (min, true)); /// # Some(()) /// # } /// ``` #[inline] #[stable(feature = "nonzero_negation_ops", since = "1.71.0")] #[rustc_const_stable(feature = "nonzero_negation_ops", since = "1.71.0")] pub const fn overflowing_neg(self) -> (Self, bool) { let (result, overflow) = self.get().overflowing_neg(); // SAFETY: negation of nonzero cannot yield zero values. ((unsafe { Self::new_unchecked(result) }), overflow) } /// Saturating negation. Computes `-self`, #[doc = concat!("returning [`NonZero::<", stringify!($Int), ">::MAX`]")] #[doc = concat!("if `self == NonZero::<", stringify!($Int), ">::MIN`")] /// instead of overflowing. /// /// # Example /// /// ``` /// # use std::num::NonZero; /// # /// # fn main() { test().unwrap(); } /// # fn test() -> Option<()> { #[doc = concat!("let pos_five = NonZero::new(5", stringify!($Int), ")?;")] #[doc = concat!("let neg_five = NonZero::new(-5", stringify!($Int), ")?;")] #[doc = concat!("let min = NonZero::new(", stringify!($Int), "::MIN)?;")] #[doc = concat!("let min_plus_one = NonZero::new(", stringify!($Int), "::MIN + 1)?;")] #[doc = concat!("let max = NonZero::new(", stringify!($Int), "::MAX)?;")] /// /// assert_eq!(pos_five.saturating_neg(), neg_five); /// assert_eq!(min.saturating_neg(), max); /// assert_eq!(max.saturating_neg(), min_plus_one); /// # Some(()) /// # } /// ``` #[inline] #[stable(feature = "nonzero_negation_ops", since = "1.71.0")] #[rustc_const_stable(feature = "nonzero_negation_ops", since = "1.71.0")] pub const fn saturating_neg(self) -> Self { if let Some(result) = self.checked_neg() { return result; } Self::MAX } /// Wrapping (modular) negation. Computes `-self`, wrapping around at the boundary /// of the type. /// #[doc = concat!("See [`", stringify!($Int), "::wrapping_neg`]")] /// for documentation on overflow behavior. /// /// # Example /// /// ``` /// # use std::num::NonZero; /// # /// # fn main() { test().unwrap(); } /// # fn test() -> Option<()> { #[doc = concat!("let pos_five = NonZero::new(5", stringify!($Int), ")?;")] #[doc = concat!("let neg_five = NonZero::new(-5", stringify!($Int), ")?;")] #[doc = concat!("let min = NonZero::new(", stringify!($Int), "::MIN)?;")] /// /// assert_eq!(pos_five.wrapping_neg(), neg_five); /// assert_eq!(min.wrapping_neg(), min); /// # Some(()) /// # } /// ``` #[inline] #[stable(feature = "nonzero_negation_ops", since = "1.71.0")] #[rustc_const_stable(feature = "nonzero_negation_ops", since = "1.71.0")] pub const fn wrapping_neg(self) -> Self { let result = self.get().wrapping_neg(); // SAFETY: negation of nonzero cannot yield zero values. unsafe { Self::new_unchecked(result) } } /// Returns the bit pattern of `self` reinterpreted as an unsigned integer of the same size. /// /// # Examples /// /// ``` /// # use std::num::NonZero; /// #[doc = concat!("let n = NonZero::new(-1", stringify!($Int), ").unwrap();")] /// #[doc = concat!("assert_eq!(n.cast_unsigned(), NonZero::<", stringify!($Uint), ">::MAX);")] /// ``` #[stable(feature = "integer_sign_cast", since = "1.87.0")] #[rustc_const_stable(feature = "integer_sign_cast", since = "1.87.0")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline(always)] pub const fn cast_unsigned(self) -> NonZero<$Uint> { // SAFETY: `self.get()` can't be zero unsafe { NonZero::new_unchecked(self.get().cast_unsigned()) } } }; } nonzero_integer! { Self = NonZeroU8, Primitive = unsigned u8, SignedPrimitive = i8, rot = 2, rot_op = "0x82", rot_result = "0xa", swap_op = "0x12", swapped = "0x12", reversed = "0x48", } nonzero_integer! { Self = NonZeroU16, Primitive = unsigned u16, SignedPrimitive = i16, rot = 4, rot_op = "0xa003", rot_result = "0x3a", swap_op = "0x1234", swapped = "0x3412", reversed = "0x2c48", } nonzero_integer! { Self = NonZeroU32, Primitive = unsigned u32, SignedPrimitive = i32, rot = 8, rot_op = "0x10000b3", rot_result = "0xb301", swap_op = "0x12345678", swapped = "0x78563412", reversed = "0x1e6a2c48", } nonzero_integer! { Self = NonZeroU64, Primitive = unsigned u64, SignedPrimitive = i64, rot = 12, rot_op = "0xaa00000000006e1", rot_result = "0x6e10aa", swap_op = "0x1234567890123456", swapped = "0x5634129078563412", reversed = "0x6a2c48091e6a2c48", } nonzero_integer! { Self = NonZeroU128, Primitive = unsigned u128, SignedPrimitive = i128, rot = 16, rot_op = "0x13f40000000000000000000000004f76", rot_result = "0x4f7613f4", swap_op = "0x12345678901234567890123456789012", swapped = "0x12907856341290785634129078563412", reversed = "0x48091e6a2c48091e6a2c48091e6a2c48", } #[cfg(target_pointer_width = "16")] nonzero_integer! { Self = NonZeroUsize, Primitive = unsigned usize, SignedPrimitive = isize, rot = 4, rot_op = "0xa003", rot_result = "0x3a", swap_op = "0x1234", swapped = "0x3412", reversed = "0x2c48", } #[cfg(target_pointer_width = "32")] nonzero_integer! { Self = NonZeroUsize, Primitive = unsigned usize, SignedPrimitive = isize, rot = 8, rot_op = "0x10000b3", rot_result = "0xb301", swap_op = "0x12345678", swapped = "0x78563412", reversed = "0x1e6a2c48", } #[cfg(target_pointer_width = "64")] nonzero_integer! { Self = NonZeroUsize, Primitive = unsigned usize, SignedPrimitive = isize, rot = 12, rot_op = "0xaa00000000006e1", rot_result = "0x6e10aa", swap_op = "0x1234567890123456", swapped = "0x5634129078563412", reversed = "0x6a2c48091e6a2c48", } nonzero_integer! { Self = NonZeroI8, Primitive = signed i8, UnsignedPrimitive = u8, rot = 2, rot_op = "-0x7e", rot_result = "0xa", swap_op = "0x12", swapped = "0x12", reversed = "0x48", } nonzero_integer! { Self = NonZeroI16, Primitive = signed i16, UnsignedPrimitive = u16, rot = 4, rot_op = "-0x5ffd", rot_result = "0x3a", swap_op = "0x1234", swapped = "0x3412", reversed = "0x2c48", } nonzero_integer! { Self = NonZeroI32, Primitive = signed i32, UnsignedPrimitive = u32, rot = 8, rot_op = "0x10000b3", rot_result = "0xb301", swap_op = "0x12345678", swapped = "0x78563412", reversed = "0x1e6a2c48", } nonzero_integer! { Self = NonZeroI64, Primitive = signed i64, UnsignedPrimitive = u64, rot = 12, rot_op = "0xaa00000000006e1", rot_result = "0x6e10aa", swap_op = "0x1234567890123456", swapped = "0x5634129078563412", reversed = "0x6a2c48091e6a2c48", } nonzero_integer! { Self = NonZeroI128, Primitive = signed i128, UnsignedPrimitive = u128, rot = 16, rot_op = "0x13f40000000000000000000000004f76", rot_result = "0x4f7613f4", swap_op = "0x12345678901234567890123456789012", swapped = "0x12907856341290785634129078563412", reversed = "0x48091e6a2c48091e6a2c48091e6a2c48", } #[cfg(target_pointer_width = "16")] nonzero_integer! { Self = NonZeroIsize, Primitive = signed isize, UnsignedPrimitive = usize, rot = 4, rot_op = "-0x5ffd", rot_result = "0x3a", swap_op = "0x1234", swapped = "0x3412", reversed = "0x2c48", } #[cfg(target_pointer_width = "32")] nonzero_integer! { Self = NonZeroIsize, Primitive = signed isize, UnsignedPrimitive = usize, rot = 8, rot_op = "0x10000b3", rot_result = "0xb301", swap_op = "0x12345678", swapped = "0x78563412", reversed = "0x1e6a2c48", } #[cfg(target_pointer_width = "64")] nonzero_integer! { Self = NonZeroIsize, Primitive = signed isize, UnsignedPrimitive = usize, rot = 12, rot_op = "0xaa00000000006e1", rot_result = "0x6e10aa", swap_op = "0x1234567890123456", swapped = "0x5634129078563412", reversed = "0x6a2c48091e6a2c48", }