//! Operations on ASCII `[u8]`. use crate::mem; #[lang = "slice_u8"] #[cfg(not(test))] impl [u8] { /// Checks if all bytes in this slice are within the ASCII range. #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] #[inline] pub fn is_ascii(&self) -> bool { is_ascii(self) } /// Checks that two slices are an ASCII case-insensitive match. /// /// Same as `to_ascii_lowercase(a) == to_ascii_lowercase(b)`, /// but without allocating and copying temporaries. #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] #[inline] pub fn eq_ignore_ascii_case(&self, other: &[u8]) -> bool { self.len() == other.len() && self.iter().zip(other).all(|(a, b)| a.eq_ignore_ascii_case(b)) } /// Converts this slice to its ASCII upper case equivalent in-place. /// /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', /// but non-ASCII letters are unchanged. /// /// To return a new uppercased value without modifying the existing one, use /// [`to_ascii_uppercase`]. /// /// [`to_ascii_uppercase`]: #method.to_ascii_uppercase #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] #[inline] pub fn make_ascii_uppercase(&mut self) { for byte in self { byte.make_ascii_uppercase(); } } /// Converts this slice to its ASCII lower case equivalent in-place. /// /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', /// but non-ASCII letters are unchanged. /// /// To return a new lowercased value without modifying the existing one, use /// [`to_ascii_lowercase`]. /// /// [`to_ascii_lowercase`]: #method.to_ascii_lowercase #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] #[inline] pub fn make_ascii_lowercase(&mut self) { for byte in self { byte.make_ascii_lowercase(); } } } /// Returns `true` if any byte in the word `v` is nonascii (>= 128). Snarfed /// from `../str/mod.rs`, which does something similar for utf8 validation. #[inline] fn contains_nonascii(v: usize) -> bool { const NONASCII_MASK: usize = 0x80808080_80808080u64 as usize; (NONASCII_MASK & v) != 0 } /// Optimized ASCII test that will use usize-at-a-time operations instead of /// byte-at-a-time operations (when possible). /// /// The algorithm we use here is pretty simple. If `s` is too short, we just /// check each byte and be done with it. Otherwise: /// /// - Read the first word with an unaligned load. /// - Align the pointer, read subsequent words until end with aligned loads. /// - Read the last `usize` from `s` with an unaligned load. /// /// If any of these loads produces something for which `contains_nonascii` /// (above) returns true, then we know the answer is false. #[inline] fn is_ascii(s: &[u8]) -> bool { const USIZE_SIZE: usize = mem::size_of::(); let len = s.len(); let align_offset = s.as_ptr().align_offset(USIZE_SIZE); // If we wouldn't gain anything from the word-at-a-time implementation, fall // back to a scalar loop. // // We also do this for architectures where `size_of::()` isn't // sufficient alignment for `usize`, because it's a weird edge case. if len < USIZE_SIZE || len < align_offset || USIZE_SIZE < mem::align_of::() { return s.iter().all(|b| b.is_ascii()); } // We always read the first word unaligned, which means `align_offset` is // 0, we'd read the same value again for the aligned read. let offset_to_aligned = if align_offset == 0 { USIZE_SIZE } else { align_offset }; let start = s.as_ptr(); // SAFETY: We verify `len < USIZE_SIZE` above. let first_word = unsafe { (start as *const usize).read_unaligned() }; if contains_nonascii(first_word) { return false; } // We checked this above, somewhat implicitly. Note that `offset_to_aligned` // is either `align_offset` or `USIZE_SIZE`, both of are explicitly checked // above. debug_assert!(offset_to_aligned <= len); // SAFETY: word_ptr is the (properly aligned) usize ptr we use to read the // middle chunk of the slice. let mut word_ptr = unsafe { start.add(offset_to_aligned) as *const usize }; // `byte_pos` is the byte index of `word_ptr`, used for loop end checks. let mut byte_pos = offset_to_aligned; // Paranoia check about alignment, since we're about to do a bunch of // unaligned loads. In practice this should be impossible barring a bug in // `align_offset` though. debug_assert_eq!((word_ptr as usize) % mem::align_of::(), 0); // Read subsequent words until the last aligned word, excluding the last // aligned word by itself to be done in tail check later, to ensure that // tail is always one `usize` at most to extra branch `byte_pos == len`. while byte_pos < len - USIZE_SIZE { debug_assert!( // Sanity check that the read is in bounds (word_ptr as usize + USIZE_SIZE) <= (start.wrapping_add(len) as usize) && // And that our assumptions about `byte_pos` hold. (word_ptr as usize) - (start as usize) == byte_pos ); // SAFETY: We know `word_ptr` is properly aligned (because of // `align_offset`), and we know that we have enough bytes between `word_ptr` and the end let word = unsafe { word_ptr.read() }; if contains_nonascii(word) { return false; } byte_pos += USIZE_SIZE; // SAFETY: We know that `byte_pos <= len - USIZE_SIZE`, which means that // after this `add`, `word_ptr` will be at most one-past-the-end. word_ptr = unsafe { word_ptr.add(1) }; } // Sanity check to ensure there really is only one `usize` left. This should // be guaranteed by our loop condition. debug_assert!(byte_pos <= len && len - byte_pos <= USIZE_SIZE); // SAFETY: This relies on `len >= USIZE_SIZE`, which we check at the start. let last_word = unsafe { (start.add(len - USIZE_SIZE) as *const usize).read_unaligned() }; !contains_nonascii(last_word) }