use crate::io; use crate::sys::anonymous_pipe::{AnonPipe, pipe as pipe_inner}; /// Create an anonymous pipe. /// /// # Behavior /// /// A pipe is a one-way data channel provided by the OS, which works across processes. A pipe is /// typically used to communicate between two or more separate processes, as there are better, /// faster ways to communicate within a single process. /// /// In particular: /// /// * A read on a [`PipeReader`] blocks until the pipe is non-empty. /// * A write on a [`PipeWriter`] blocks when the pipe is full. /// * When all copies of a [`PipeWriter`] are closed, a read on the corresponding [`PipeReader`] /// returns EOF. /// * [`PipeWriter`] can be shared, and multiple processes or threads can write to it at once, but /// writes (above a target-specific threshold) may have their data interleaved. /// * [`PipeReader`] can be shared, and multiple processes or threads can read it at once. Any /// given byte will only get consumed by one reader. There are no guarantees about data /// interleaving. /// * Portable applications cannot assume any atomicity of messages larger than a single byte. /// /// # Platform-specific behavior /// /// This function currently corresponds to the `pipe` function on Unix and the /// `CreatePipe` function on Windows. /// /// Note that this [may change in the future][changes]. /// /// # Capacity /// /// Pipe capacity is platform dependent. To quote the Linux [man page]: /// /// > Different implementations have different limits for the pipe capacity. Applications should /// > not rely on a particular capacity: an application should be designed so that a reading process /// > consumes data as soon as it is available, so that a writing process does not remain blocked. /// /// # Examples /// /// ```no_run /// #![feature(anonymous_pipe)] /// # #[cfg(miri)] fn main() {} /// # #[cfg(not(miri))] /// # fn main() -> std::io::Result<()> { /// use std::process::Command; /// use std::io::{pipe, Read, Write}; /// let (ping_rx, mut ping_tx) = pipe()?; /// let (mut pong_rx, pong_tx) = pipe()?; /// /// // Spawn a process that echoes its input. /// let mut echo_server = Command::new("cat").stdin(ping_rx).stdout(pong_tx).spawn()?; /// /// ping_tx.write_all(b"hello")?; /// // Close to unblock echo_server's reader. /// drop(ping_tx); /// /// let mut buf = String::new(); /// // Block until echo_server's writer is closed. /// pong_rx.read_to_string(&mut buf)?; /// assert_eq!(&buf, "hello"); /// /// echo_server.wait()?; /// # Ok(()) /// # } /// ``` /// [changes]: io#platform-specific-behavior /// [man page]: https://man7.org/linux/man-pages/man7/pipe.7.html #[unstable(feature = "anonymous_pipe", issue = "127154")] #[inline] pub fn pipe() -> io::Result<(PipeReader, PipeWriter)> { pipe_inner().map(|(reader, writer)| (PipeReader(reader), PipeWriter(writer))) } /// Read end of an anonymous pipe. #[unstable(feature = "anonymous_pipe", issue = "127154")] #[derive(Debug)] pub struct PipeReader(pub(crate) AnonPipe); /// Write end of an anonymous pipe. #[unstable(feature = "anonymous_pipe", issue = "127154")] #[derive(Debug)] pub struct PipeWriter(pub(crate) AnonPipe); impl PipeReader { /// Create a new [`PipeReader`] instance that shares the same underlying file description. /// /// # Examples /// /// ```no_run /// #![feature(anonymous_pipe)] /// # #[cfg(miri)] fn main() {} /// # #[cfg(not(miri))] /// # fn main() -> std::io::Result<()> { /// use std::fs; /// use std::io::{pipe, Write}; /// use std::process::Command; /// const NUM_SLOT: u8 = 2; /// const NUM_PROC: u8 = 5; /// const OUTPUT: &str = "work.txt"; /// /// let mut jobs = vec![]; /// let (reader, mut writer) = pipe()?; /// /// // Write NUM_SLOT characters the pipe. /// writer.write_all(&[b'|'; NUM_SLOT as usize])?; /// /// // Spawn several processes that read a character from the pipe, do some work, then /// // write back to the pipe. When the pipe is empty, the processes block, so only /// // NUM_SLOT processes can be working at any given time. /// for _ in 0..NUM_PROC { /// jobs.push( /// Command::new("bash") /// .args(["-c", /// &format!( /// "read -n 1\n\ /// echo -n 'x' >> '{OUTPUT}'\n\ /// echo -n '|'", /// ), /// ]) /// .stdin(reader.try_clone()?) /// .stdout(writer.try_clone()?) /// .spawn()?, /// ); /// } /// /// // Wait for all jobs to finish. /// for mut job in jobs { /// job.wait()?; /// } /// /// // Check our work and clean up. /// let xs = fs::read_to_string(OUTPUT)?; /// fs::remove_file(OUTPUT)?; /// assert_eq!(xs, "x".repeat(NUM_PROC.into())); /// # Ok(()) /// # } /// ``` #[unstable(feature = "anonymous_pipe", issue = "127154")] pub fn try_clone(&self) -> io::Result { self.0.try_clone().map(Self) } } impl PipeWriter { /// Create a new [`PipeWriter`] instance that shares the same underlying file description. /// /// # Examples /// /// ```no_run /// #![feature(anonymous_pipe)] /// # #[cfg(miri)] fn main() {} /// # #[cfg(not(miri))] /// # fn main() -> std::io::Result<()> { /// use std::process::Command; /// use std::io::{pipe, Read}; /// let (mut reader, writer) = pipe()?; /// /// // Spawn a process that writes to stdout and stderr. /// let mut peer = Command::new("bash") /// .args([ /// "-c", /// "echo -n foo\n\ /// echo -n bar >&2" /// ]) /// .stdout(writer.try_clone()?) /// .stderr(writer) /// .spawn()?; /// /// // Read and check the result. /// let mut msg = String::new(); /// reader.read_to_string(&mut msg)?; /// assert_eq!(&msg, "foobar"); /// /// peer.wait()?; /// # Ok(()) /// # } /// ``` #[unstable(feature = "anonymous_pipe", issue = "127154")] pub fn try_clone(&self) -> io::Result { self.0.try_clone().map(Self) } } #[unstable(feature = "anonymous_pipe", issue = "127154")] impl io::Read for &PipeReader { fn read(&mut self, buf: &mut [u8]) -> io::Result { self.0.read(buf) } fn read_vectored(&mut self, bufs: &mut [io::IoSliceMut<'_>]) -> io::Result { self.0.read_vectored(bufs) } #[inline] fn is_read_vectored(&self) -> bool { self.0.is_read_vectored() } fn read_to_end(&mut self, buf: &mut Vec) -> io::Result { self.0.read_to_end(buf) } fn read_buf(&mut self, buf: io::BorrowedCursor<'_>) -> io::Result<()> { self.0.read_buf(buf) } } #[unstable(feature = "anonymous_pipe", issue = "127154")] impl io::Read for PipeReader { fn read(&mut self, buf: &mut [u8]) -> io::Result { self.0.read(buf) } fn read_vectored(&mut self, bufs: &mut [io::IoSliceMut<'_>]) -> io::Result { self.0.read_vectored(bufs) } #[inline] fn is_read_vectored(&self) -> bool { self.0.is_read_vectored() } fn read_to_end(&mut self, buf: &mut Vec) -> io::Result { self.0.read_to_end(buf) } fn read_buf(&mut self, buf: io::BorrowedCursor<'_>) -> io::Result<()> { self.0.read_buf(buf) } } #[unstable(feature = "anonymous_pipe", issue = "127154")] impl io::Write for &PipeWriter { fn write(&mut self, buf: &[u8]) -> io::Result { self.0.write(buf) } #[inline] fn flush(&mut self) -> io::Result<()> { Ok(()) } fn write_vectored(&mut self, bufs: &[io::IoSlice<'_>]) -> io::Result { self.0.write_vectored(bufs) } #[inline] fn is_write_vectored(&self) -> bool { self.0.is_write_vectored() } } #[unstable(feature = "anonymous_pipe", issue = "127154")] impl io::Write for PipeWriter { fn write(&mut self, buf: &[u8]) -> io::Result { self.0.write(buf) } #[inline] fn flush(&mut self) -> io::Result<()> { Ok(()) } fn write_vectored(&mut self, bufs: &[io::IoSlice<'_>]) -> io::Result { self.0.write_vectored(bufs) } #[inline] fn is_write_vectored(&self) -> bool { self.0.is_write_vectored() } }