//! A cross-platform anonymous pipe. //! //! This module provides support for anonymous OS pipes, like [pipe] on Linux or [CreatePipe] on //! Windows. //! //! # Behavior //! //! A pipe is a synchronous, unidirectional data channel between two or more processes, like an //! interprocess [`mpsc`](crate::sync::mpsc) provided by the OS. In particular: //! //! * A read on a [`PipeReader`] blocks until the pipe is non-empty. //! * A write on a [`PipeWriter`] blocks when the pipe is full. //! * When all copies of a [`PipeWriter`] are closed, a read on the corresponding [`PipeReader`] //! returns EOF. //! * [`PipeReader`] can be shared, but only one process will consume the data in the pipe. //! //! # Capacity //! //! Pipe capacity is platform dependent. To quote the Linux [man page]: //! //! > Different implementations have different limits for the pipe capacity. Applications should //! > not rely on a particular capacity: an application should be designed so that a reading process //! > consumes data as soon as it is available, so that a writing process does not remain blocked. //! //! # Examples //! //! ```no_run //! #![feature(anonymous_pipe)] //! # #[cfg(miri)] fn main() {} //! # #[cfg(not(miri))] //! # fn main() -> std::io::Result<()> { //! # use std::process::Command; //! # use std::io::{Read, Write}; //! let (ping_rx, mut ping_tx) = std::pipe::pipe()?; //! let (mut pong_rx, pong_tx) = std::pipe::pipe()?; //! //! // Spawn a process that echoes its input. //! let mut echo_server = Command::new("cat").stdin(ping_rx).stdout(pong_tx).spawn()?; //! //! ping_tx.write_all(b"hello")?; //! // Close to unblock echo_server's reader. //! drop(ping_tx); //! //! let mut buf = String::new(); //! // Block until echo_server's writer is closed. //! pong_rx.read_to_string(&mut buf)?; //! assert_eq!(&buf, "hello"); //! //! echo_server.wait()?; //! # Ok(()) //! # } //! ``` //! [pipe]: https://man7.org/linux/man-pages/man2/pipe.2.html //! [CreatePipe]: https://learn.microsoft.com/en-us/windows/win32/api/namedpipeapi/nf-namedpipeapi-createpipe //! [man page]: https://man7.org/linux/man-pages/man7/pipe.7.html use crate::io; use crate::sys::anonymous_pipe::{AnonPipe, pipe as pipe_inner}; /// Create anonymous pipe that is close-on-exec and blocking. /// /// # Examples /// /// See the [module-level](crate::pipe) documentation for examples. #[unstable(feature = "anonymous_pipe", issue = "127154")] #[inline] pub fn pipe() -> io::Result<(PipeReader, PipeWriter)> { pipe_inner().map(|(reader, writer)| (PipeReader(reader), PipeWriter(writer))) } /// Read end of the anonymous pipe. #[unstable(feature = "anonymous_pipe", issue = "127154")] #[derive(Debug)] pub struct PipeReader(pub(crate) AnonPipe); /// Write end of the anonymous pipe. #[unstable(feature = "anonymous_pipe", issue = "127154")] #[derive(Debug)] pub struct PipeWriter(pub(crate) AnonPipe); impl PipeReader { /// Create a new [`PipeReader`] instance that shares the same underlying file description. /// /// # Examples /// /// ```no_run /// #![feature(anonymous_pipe)] /// # #[cfg(miri)] fn main() {} /// # #[cfg(not(miri))] /// # fn main() -> std::io::Result<()> { /// # use std::fs; /// # use std::io::Write; /// # use std::process::Command; /// const NUM_SLOT: u8 = 2; /// const NUM_PROC: u8 = 5; /// const OUTPUT: &str = "work.txt"; /// /// let mut jobs = vec![]; /// let (reader, mut writer) = std::pipe::pipe()?; /// /// // Write NUM_SLOT characters the the pipe. /// writer.write_all(&[b'|'; NUM_SLOT as usize])?; /// /// // Spawn several processes that read a character from the pipe, do some work, then /// // write back to the pipe. When the pipe is empty, the processes block, so only /// // NUM_SLOT processes can be working at any given time. /// for _ in 0..NUM_PROC { /// jobs.push( /// Command::new("bash") /// .args(["-c", /// &format!( /// "read -n 1\n\ /// echo -n 'x' >> '{OUTPUT}'\n\ /// echo -n '|'", /// ), /// ]) /// .stdin(reader.try_clone()?) /// .stdout(writer.try_clone()?) /// .spawn()?, /// ); /// } /// /// // Wait for all jobs to finish. /// for mut job in jobs { /// job.wait()?; /// } /// /// // Check our work and clean up. /// let xs = fs::read_to_string(OUTPUT)?; /// fs::remove_file(OUTPUT)?; /// assert_eq!(xs, "x".repeat(NUM_PROC.into())); /// # Ok(()) /// # } /// ``` #[unstable(feature = "anonymous_pipe", issue = "127154")] pub fn try_clone(&self) -> io::Result { self.0.try_clone().map(Self) } } impl PipeWriter { /// Create a new [`PipeWriter`] instance that shares the same underlying file description. /// /// # Examples /// /// ```no_run /// #![feature(anonymous_pipe)] /// # #[cfg(miri)] fn main() {} /// # #[cfg(not(miri))] /// # fn main() -> std::io::Result<()> { /// # use std::process::Command; /// # use std::io::Read; /// let (mut reader, writer) = std::pipe::pipe()?; /// /// // Spawn a process that writes to stdout and stderr. /// let mut peer = Command::new("bash") /// .args([ /// "-c", /// "echo -n foo\n\ /// echo -n bar >&2" /// ]) /// .stdout(writer.try_clone()?) /// .stderr(writer) /// .spawn()?; /// /// // Read and check the result. /// let mut msg = String::new(); /// reader.read_to_string(&mut msg)?; /// assert_eq!(&msg, "foobar"); /// /// peer.wait()?; /// # Ok(()) /// # } /// ``` #[unstable(feature = "anonymous_pipe", issue = "127154")] pub fn try_clone(&self) -> io::Result { self.0.try_clone().map(Self) } } #[unstable(feature = "anonymous_pipe", issue = "127154")] impl io::Read for &PipeReader { fn read(&mut self, buf: &mut [u8]) -> io::Result { self.0.read(buf) } fn read_vectored(&mut self, bufs: &mut [io::IoSliceMut<'_>]) -> io::Result { self.0.read_vectored(bufs) } #[inline] fn is_read_vectored(&self) -> bool { self.0.is_read_vectored() } fn read_to_end(&mut self, buf: &mut Vec) -> io::Result { self.0.read_to_end(buf) } fn read_buf(&mut self, buf: io::BorrowedCursor<'_>) -> io::Result<()> { self.0.read_buf(buf) } } #[unstable(feature = "anonymous_pipe", issue = "127154")] impl io::Read for PipeReader { fn read(&mut self, buf: &mut [u8]) -> io::Result { self.0.read(buf) } fn read_vectored(&mut self, bufs: &mut [io::IoSliceMut<'_>]) -> io::Result { self.0.read_vectored(bufs) } #[inline] fn is_read_vectored(&self) -> bool { self.0.is_read_vectored() } fn read_to_end(&mut self, buf: &mut Vec) -> io::Result { self.0.read_to_end(buf) } fn read_buf(&mut self, buf: io::BorrowedCursor<'_>) -> io::Result<()> { self.0.read_buf(buf) } } #[unstable(feature = "anonymous_pipe", issue = "127154")] impl io::Write for &PipeWriter { fn write(&mut self, buf: &[u8]) -> io::Result { self.0.write(buf) } #[inline] fn flush(&mut self) -> io::Result<()> { Ok(()) } fn write_vectored(&mut self, bufs: &[io::IoSlice<'_>]) -> io::Result { self.0.write_vectored(bufs) } #[inline] fn is_write_vectored(&self) -> bool { self.0.is_write_vectored() } } #[unstable(feature = "anonymous_pipe", issue = "127154")] impl io::Write for PipeWriter { fn write(&mut self, buf: &[u8]) -> io::Result { self.0.write(buf) } #[inline] fn flush(&mut self) -> io::Result<()> { Ok(()) } fn write_vectored(&mut self, bufs: &[io::IoSlice<'_>]) -> io::Result { self.0.write_vectored(bufs) } #[inline] fn is_write_vectored(&self) -> bool { self.0.is_write_vectored() } }