#[cfg(test)] mod tests; use crate::ffi::{c_int, c_void}; use crate::io::{self, BorrowedCursor, ErrorKind, IoSlice, IoSliceMut}; use crate::net::{ Ipv4Addr, Ipv6Addr, Shutdown, SocketAddr, SocketAddrV4, SocketAddrV6, ToSocketAddrs, }; use crate::sys::common::small_c_string::run_with_cstr; use crate::sys::net::connection::each_addr; use crate::sys_common::{AsInner, FromInner}; use crate::time::Duration; use crate::{cmp, fmt, mem, ptr}; cfg_select! { target_os = "hermit" => { mod hermit; pub use hermit::*; } target_os = "solid_asp3" => { mod solid; pub use solid::*; } target_family = "unix" => { mod unix; pub use unix::*; } all(target_os = "wasi", target_env = "p2") => { mod wasip2; pub use wasip2::*; } target_os = "windows" => { mod windows; pub use windows::*; } _ => {} } use netc as c; cfg_select! { any( target_os = "dragonfly", target_os = "freebsd", target_os = "openbsd", target_os = "netbsd", target_os = "illumos", target_os = "solaris", target_os = "haiku", target_os = "l4re", target_os = "nto", target_os = "nuttx", target_vendor = "apple", ) => { use c::IPV6_JOIN_GROUP as IPV6_ADD_MEMBERSHIP; use c::IPV6_LEAVE_GROUP as IPV6_DROP_MEMBERSHIP; } _ => { use c::IPV6_ADD_MEMBERSHIP; use c::IPV6_DROP_MEMBERSHIP; } } cfg_select! { any( target_os = "linux", target_os = "android", target_os = "hurd", target_os = "dragonfly", target_os = "freebsd", target_os = "openbsd", target_os = "netbsd", target_os = "solaris", target_os = "illumos", target_os = "haiku", target_os = "nto", target_os = "cygwin", ) => { use libc::MSG_NOSIGNAL; } _ => { const MSG_NOSIGNAL: c_int = 0x0; } } cfg_select! { any( target_os = "dragonfly", target_os = "freebsd", target_os = "openbsd", target_os = "netbsd", target_os = "solaris", target_os = "illumos", target_os = "nto", ) => { use crate::ffi::c_uchar; type IpV4MultiCastType = c_uchar; } _ => { type IpV4MultiCastType = c_int; } } //////////////////////////////////////////////////////////////////////////////// // address conversions //////////////////////////////////////////////////////////////////////////////// fn ip_v4_addr_to_c(addr: &Ipv4Addr) -> c::in_addr { // `s_addr` is stored as BE on all machines and the array is in BE order. // So the native endian conversion method is used so that it's never swapped. c::in_addr { s_addr: u32::from_ne_bytes(addr.octets()) } } fn ip_v6_addr_to_c(addr: &Ipv6Addr) -> c::in6_addr { c::in6_addr { s6_addr: addr.octets() } } fn ip_v4_addr_from_c(addr: c::in_addr) -> Ipv4Addr { Ipv4Addr::from(addr.s_addr.to_ne_bytes()) } fn ip_v6_addr_from_c(addr: c::in6_addr) -> Ipv6Addr { Ipv6Addr::from(addr.s6_addr) } fn socket_addr_v4_to_c(addr: &SocketAddrV4) -> c::sockaddr_in { c::sockaddr_in { sin_family: c::AF_INET as c::sa_family_t, sin_port: addr.port().to_be(), sin_addr: ip_v4_addr_to_c(addr.ip()), ..unsafe { mem::zeroed() } } } fn socket_addr_v6_to_c(addr: &SocketAddrV6) -> c::sockaddr_in6 { c::sockaddr_in6 { sin6_family: c::AF_INET6 as c::sa_family_t, sin6_port: addr.port().to_be(), sin6_addr: ip_v6_addr_to_c(addr.ip()), sin6_flowinfo: addr.flowinfo(), sin6_scope_id: addr.scope_id(), ..unsafe { mem::zeroed() } } } fn socket_addr_v4_from_c(addr: c::sockaddr_in) -> SocketAddrV4 { SocketAddrV4::new(ip_v4_addr_from_c(addr.sin_addr), u16::from_be(addr.sin_port)) } fn socket_addr_v6_from_c(addr: c::sockaddr_in6) -> SocketAddrV6 { SocketAddrV6::new( ip_v6_addr_from_c(addr.sin6_addr), u16::from_be(addr.sin6_port), addr.sin6_flowinfo, addr.sin6_scope_id, ) } /// A type with the same memory layout as `c::sockaddr`. Used in converting Rust level /// SocketAddr* types into their system representation. The benefit of this specific /// type over using `c::sockaddr_storage` is that this type is exactly as large as it /// needs to be and not a lot larger. And it can be initialized more cleanly from Rust. #[repr(C)] union SocketAddrCRepr { v4: c::sockaddr_in, v6: c::sockaddr_in6, } impl SocketAddrCRepr { fn as_ptr(&self) -> *const c::sockaddr { self as *const _ as *const c::sockaddr } } fn socket_addr_to_c(addr: &SocketAddr) -> (SocketAddrCRepr, c::socklen_t) { match addr { SocketAddr::V4(a) => { let sockaddr = SocketAddrCRepr { v4: socket_addr_v4_to_c(a) }; (sockaddr, size_of::() as c::socklen_t) } SocketAddr::V6(a) => { let sockaddr = SocketAddrCRepr { v6: socket_addr_v6_to_c(a) }; (sockaddr, size_of::() as c::socklen_t) } } } unsafe fn socket_addr_from_c( storage: *const c::sockaddr_storage, len: usize, ) -> io::Result { match (*storage).ss_family as c_int { c::AF_INET => { assert!(len >= size_of::()); Ok(SocketAddr::V4(socket_addr_v4_from_c(unsafe { *(storage as *const _ as *const c::sockaddr_in) }))) } c::AF_INET6 => { assert!(len >= size_of::()); Ok(SocketAddr::V6(socket_addr_v6_from_c(unsafe { *(storage as *const _ as *const c::sockaddr_in6) }))) } _ => Err(io::const_error!(ErrorKind::InvalidInput, "invalid argument")), } } //////////////////////////////////////////////////////////////////////////////// // sockaddr and misc bindings //////////////////////////////////////////////////////////////////////////////// pub fn setsockopt( sock: &Socket, level: c_int, option_name: c_int, option_value: T, ) -> io::Result<()> { unsafe { cvt(c::setsockopt( sock.as_raw(), level, option_name, (&raw const option_value) as *const _, size_of::() as c::socklen_t, ))?; Ok(()) } } pub fn getsockopt(sock: &Socket, level: c_int, option_name: c_int) -> io::Result { unsafe { let mut option_value: T = mem::zeroed(); let mut option_len = size_of::() as c::socklen_t; cvt(c::getsockopt( sock.as_raw(), level, option_name, (&raw mut option_value) as *mut _, &mut option_len, ))?; Ok(option_value) } } fn sockname(f: F) -> io::Result where F: FnOnce(*mut c::sockaddr, *mut c::socklen_t) -> c_int, { unsafe { let mut storage: c::sockaddr_storage = mem::zeroed(); let mut len = size_of_val(&storage) as c::socklen_t; cvt(f((&raw mut storage) as *mut _, &mut len))?; socket_addr_from_c(&storage, len as usize) } } #[cfg(target_os = "android")] fn to_ipv6mr_interface(value: u32) -> c_int { value as c_int } #[cfg(not(target_os = "android"))] fn to_ipv6mr_interface(value: u32) -> crate::ffi::c_uint { value as crate::ffi::c_uint } //////////////////////////////////////////////////////////////////////////////// // lookup_host //////////////////////////////////////////////////////////////////////////////// pub struct LookupHost { original: *mut c::addrinfo, cur: *mut c::addrinfo, port: u16, } impl Iterator for LookupHost { type Item = SocketAddr; fn next(&mut self) -> Option { loop { unsafe { let cur = self.cur.as_ref()?; self.cur = cur.ai_next; match socket_addr_from_c(cur.ai_addr.cast(), cur.ai_addrlen as usize) { Ok(mut addr) => { addr.set_port(self.port); return Some(addr); } Err(_) => continue, } } } } } unsafe impl Sync for LookupHost {} unsafe impl Send for LookupHost {} impl Drop for LookupHost { fn drop(&mut self) { unsafe { c::freeaddrinfo(self.original) } } } pub fn lookup_host(host: &str, port: u16) -> io::Result { init(); run_with_cstr(host.as_bytes(), &|c_host| { let mut hints: c::addrinfo = unsafe { mem::zeroed() }; hints.ai_socktype = c::SOCK_STREAM; let mut res = ptr::null_mut(); unsafe { cvt_gai(c::getaddrinfo(c_host.as_ptr(), ptr::null(), &hints, &mut res)) .map(|_| LookupHost { original: res, cur: res, port }) } }) } //////////////////////////////////////////////////////////////////////////////// // TCP streams //////////////////////////////////////////////////////////////////////////////// pub struct TcpStream { inner: Socket, } impl TcpStream { pub fn connect(addr: A) -> io::Result { init(); return each_addr(addr, inner); fn inner(addr: &SocketAddr) -> io::Result { let sock = Socket::new(addr, c::SOCK_STREAM)?; sock.connect(addr)?; Ok(TcpStream { inner: sock }) } } pub fn connect_timeout(addr: &SocketAddr, timeout: Duration) -> io::Result { init(); let sock = Socket::new(addr, c::SOCK_STREAM)?; sock.connect_timeout(addr, timeout)?; Ok(TcpStream { inner: sock }) } #[inline] pub fn socket(&self) -> &Socket { &self.inner } pub fn into_socket(self) -> Socket { self.inner } pub fn set_read_timeout(&self, dur: Option) -> io::Result<()> { self.inner.set_timeout(dur, c::SO_RCVTIMEO) } pub fn set_write_timeout(&self, dur: Option) -> io::Result<()> { self.inner.set_timeout(dur, c::SO_SNDTIMEO) } pub fn read_timeout(&self) -> io::Result> { self.inner.timeout(c::SO_RCVTIMEO) } pub fn write_timeout(&self) -> io::Result> { self.inner.timeout(c::SO_SNDTIMEO) } pub fn peek(&self, buf: &mut [u8]) -> io::Result { self.inner.peek(buf) } pub fn read(&self, buf: &mut [u8]) -> io::Result { self.inner.read(buf) } pub fn read_buf(&self, buf: BorrowedCursor<'_>) -> io::Result<()> { self.inner.read_buf(buf) } pub fn read_vectored(&self, bufs: &mut [IoSliceMut<'_>]) -> io::Result { self.inner.read_vectored(bufs) } #[inline] pub fn is_read_vectored(&self) -> bool { self.inner.is_read_vectored() } pub fn write(&self, buf: &[u8]) -> io::Result { let len = cmp::min(buf.len(), ::MAX as usize) as wrlen_t; let ret = cvt(unsafe { c::send(self.inner.as_raw(), buf.as_ptr() as *const c_void, len, MSG_NOSIGNAL) })?; Ok(ret as usize) } pub fn write_vectored(&self, bufs: &[IoSlice<'_>]) -> io::Result { self.inner.write_vectored(bufs) } #[inline] pub fn is_write_vectored(&self) -> bool { self.inner.is_write_vectored() } pub fn peer_addr(&self) -> io::Result { sockname(|buf, len| unsafe { c::getpeername(self.inner.as_raw(), buf, len) }) } pub fn socket_addr(&self) -> io::Result { sockname(|buf, len| unsafe { c::getsockname(self.inner.as_raw(), buf, len) }) } pub fn shutdown(&self, how: Shutdown) -> io::Result<()> { self.inner.shutdown(how) } pub fn duplicate(&self) -> io::Result { self.inner.duplicate().map(|s| TcpStream { inner: s }) } pub fn set_linger(&self, linger: Option) -> io::Result<()> { self.inner.set_linger(linger) } pub fn linger(&self) -> io::Result> { self.inner.linger() } pub fn set_nodelay(&self, nodelay: bool) -> io::Result<()> { self.inner.set_nodelay(nodelay) } pub fn nodelay(&self) -> io::Result { self.inner.nodelay() } pub fn set_ttl(&self, ttl: u32) -> io::Result<()> { setsockopt(&self.inner, c::IPPROTO_IP, c::IP_TTL, ttl as c_int) } pub fn ttl(&self) -> io::Result { let raw: c_int = getsockopt(&self.inner, c::IPPROTO_IP, c::IP_TTL)?; Ok(raw as u32) } pub fn take_error(&self) -> io::Result> { self.inner.take_error() } pub fn set_nonblocking(&self, nonblocking: bool) -> io::Result<()> { self.inner.set_nonblocking(nonblocking) } } impl AsInner for TcpStream { #[inline] fn as_inner(&self) -> &Socket { &self.inner } } impl FromInner for TcpStream { fn from_inner(socket: Socket) -> TcpStream { TcpStream { inner: socket } } } impl fmt::Debug for TcpStream { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { let mut res = f.debug_struct("TcpStream"); if let Ok(addr) = self.socket_addr() { res.field("addr", &addr); } if let Ok(peer) = self.peer_addr() { res.field("peer", &peer); } let name = if cfg!(windows) { "socket" } else { "fd" }; res.field(name, &self.inner.as_raw()).finish() } } //////////////////////////////////////////////////////////////////////////////// // TCP listeners //////////////////////////////////////////////////////////////////////////////// pub struct TcpListener { inner: Socket, } impl TcpListener { pub fn bind(addr: A) -> io::Result { init(); return each_addr(addr, inner); fn inner(addr: &SocketAddr) -> io::Result { let sock = Socket::new(addr, c::SOCK_STREAM)?; // On platforms with Berkeley-derived sockets, this allows to quickly // rebind a socket, without needing to wait for the OS to clean up the // previous one. // // On Windows, this allows rebinding sockets which are actively in use, // which allows “socket hijacking”, so we explicitly don't set it here. // https://docs.microsoft.com/en-us/windows/win32/winsock/using-so-reuseaddr-and-so-exclusiveaddruse #[cfg(not(windows))] setsockopt(&sock, c::SOL_SOCKET, c::SO_REUSEADDR, 1 as c_int)?; // Bind our new socket let (addr, len) = socket_addr_to_c(addr); cvt(unsafe { c::bind(sock.as_raw(), addr.as_ptr(), len as _) })?; let backlog = if cfg!(target_os = "horizon") { // The 3DS doesn't support a big connection backlog. Sometimes // it allows up to about 37, but other times it doesn't even // accept 32. There may be a global limitation causing this. 20 } else if cfg!(target_os = "haiku") { // Haiku does not support a queue length > 32 // https://github.com/haiku/haiku/blob/979a0bc487864675517fb2fab28f87dc8bf43041/headers/posix/sys/socket.h#L81 32 } else { // The default for all other platforms 128 }; // Start listening cvt(unsafe { c::listen(sock.as_raw(), backlog) })?; Ok(TcpListener { inner: sock }) } } #[inline] pub fn socket(&self) -> &Socket { &self.inner } pub fn into_socket(self) -> Socket { self.inner } pub fn socket_addr(&self) -> io::Result { sockname(|buf, len| unsafe { c::getsockname(self.inner.as_raw(), buf, len) }) } pub fn accept(&self) -> io::Result<(TcpStream, SocketAddr)> { // The `accept` function will fill in the storage with the address, // so we don't need to zero it here. // reference: https://linux.die.net/man/2/accept4 let mut storage: mem::MaybeUninit = mem::MaybeUninit::uninit(); let mut len = size_of_val(&storage) as c::socklen_t; let sock = self.inner.accept(storage.as_mut_ptr() as *mut _, &mut len)?; let addr = unsafe { socket_addr_from_c(storage.as_ptr(), len as usize)? }; Ok((TcpStream { inner: sock }, addr)) } pub fn duplicate(&self) -> io::Result { self.inner.duplicate().map(|s| TcpListener { inner: s }) } pub fn set_ttl(&self, ttl: u32) -> io::Result<()> { setsockopt(&self.inner, c::IPPROTO_IP, c::IP_TTL, ttl as c_int) } pub fn ttl(&self) -> io::Result { let raw: c_int = getsockopt(&self.inner, c::IPPROTO_IP, c::IP_TTL)?; Ok(raw as u32) } pub fn set_only_v6(&self, only_v6: bool) -> io::Result<()> { setsockopt(&self.inner, c::IPPROTO_IPV6, c::IPV6_V6ONLY, only_v6 as c_int) } pub fn only_v6(&self) -> io::Result { let raw: c_int = getsockopt(&self.inner, c::IPPROTO_IPV6, c::IPV6_V6ONLY)?; Ok(raw != 0) } pub fn take_error(&self) -> io::Result> { self.inner.take_error() } pub fn set_nonblocking(&self, nonblocking: bool) -> io::Result<()> { self.inner.set_nonblocking(nonblocking) } } impl FromInner for TcpListener { fn from_inner(socket: Socket) -> TcpListener { TcpListener { inner: socket } } } impl fmt::Debug for TcpListener { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { let mut res = f.debug_struct("TcpListener"); if let Ok(addr) = self.socket_addr() { res.field("addr", &addr); } let name = if cfg!(windows) { "socket" } else { "fd" }; res.field(name, &self.inner.as_raw()).finish() } } //////////////////////////////////////////////////////////////////////////////// // UDP //////////////////////////////////////////////////////////////////////////////// pub struct UdpSocket { inner: Socket, } impl UdpSocket { pub fn bind(addr: A) -> io::Result { init(); return each_addr(addr, inner); fn inner(addr: &SocketAddr) -> io::Result { let sock = Socket::new(addr, c::SOCK_DGRAM)?; let (addr, len) = socket_addr_to_c(addr); cvt(unsafe { c::bind(sock.as_raw(), addr.as_ptr(), len as _) })?; Ok(UdpSocket { inner: sock }) } } #[inline] pub fn socket(&self) -> &Socket { &self.inner } pub fn into_socket(self) -> Socket { self.inner } pub fn peer_addr(&self) -> io::Result { sockname(|buf, len| unsafe { c::getpeername(self.inner.as_raw(), buf, len) }) } pub fn socket_addr(&self) -> io::Result { sockname(|buf, len| unsafe { c::getsockname(self.inner.as_raw(), buf, len) }) } pub fn recv_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> { self.inner.recv_from(buf) } pub fn peek_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> { self.inner.peek_from(buf) } pub fn send_to(&self, buf: &[u8], dst: &SocketAddr) -> io::Result { let len = cmp::min(buf.len(), ::MAX as usize) as wrlen_t; let (dst, dstlen) = socket_addr_to_c(dst); let ret = cvt(unsafe { c::sendto( self.inner.as_raw(), buf.as_ptr() as *const c_void, len, MSG_NOSIGNAL, dst.as_ptr(), dstlen, ) })?; Ok(ret as usize) } pub fn duplicate(&self) -> io::Result { self.inner.duplicate().map(|s| UdpSocket { inner: s }) } pub fn set_read_timeout(&self, dur: Option) -> io::Result<()> { self.inner.set_timeout(dur, c::SO_RCVTIMEO) } pub fn set_write_timeout(&self, dur: Option) -> io::Result<()> { self.inner.set_timeout(dur, c::SO_SNDTIMEO) } pub fn read_timeout(&self) -> io::Result> { self.inner.timeout(c::SO_RCVTIMEO) } pub fn write_timeout(&self) -> io::Result> { self.inner.timeout(c::SO_SNDTIMEO) } pub fn set_broadcast(&self, broadcast: bool) -> io::Result<()> { setsockopt(&self.inner, c::SOL_SOCKET, c::SO_BROADCAST, broadcast as c_int) } pub fn broadcast(&self) -> io::Result { let raw: c_int = getsockopt(&self.inner, c::SOL_SOCKET, c::SO_BROADCAST)?; Ok(raw != 0) } pub fn set_multicast_loop_v4(&self, multicast_loop_v4: bool) -> io::Result<()> { setsockopt( &self.inner, c::IPPROTO_IP, c::IP_MULTICAST_LOOP, multicast_loop_v4 as IpV4MultiCastType, ) } pub fn multicast_loop_v4(&self) -> io::Result { let raw: IpV4MultiCastType = getsockopt(&self.inner, c::IPPROTO_IP, c::IP_MULTICAST_LOOP)?; Ok(raw != 0) } pub fn set_multicast_ttl_v4(&self, multicast_ttl_v4: u32) -> io::Result<()> { setsockopt( &self.inner, c::IPPROTO_IP, c::IP_MULTICAST_TTL, multicast_ttl_v4 as IpV4MultiCastType, ) } pub fn multicast_ttl_v4(&self) -> io::Result { let raw: IpV4MultiCastType = getsockopt(&self.inner, c::IPPROTO_IP, c::IP_MULTICAST_TTL)?; Ok(raw as u32) } pub fn set_multicast_loop_v6(&self, multicast_loop_v6: bool) -> io::Result<()> { setsockopt(&self.inner, c::IPPROTO_IPV6, c::IPV6_MULTICAST_LOOP, multicast_loop_v6 as c_int) } pub fn multicast_loop_v6(&self) -> io::Result { let raw: c_int = getsockopt(&self.inner, c::IPPROTO_IPV6, c::IPV6_MULTICAST_LOOP)?; Ok(raw != 0) } pub fn join_multicast_v4(&self, multiaddr: &Ipv4Addr, interface: &Ipv4Addr) -> io::Result<()> { let mreq = c::ip_mreq { imr_multiaddr: ip_v4_addr_to_c(multiaddr), imr_interface: ip_v4_addr_to_c(interface), }; setsockopt(&self.inner, c::IPPROTO_IP, c::IP_ADD_MEMBERSHIP, mreq) } pub fn join_multicast_v6(&self, multiaddr: &Ipv6Addr, interface: u32) -> io::Result<()> { let mreq = c::ipv6_mreq { ipv6mr_multiaddr: ip_v6_addr_to_c(multiaddr), ipv6mr_interface: to_ipv6mr_interface(interface), }; setsockopt(&self.inner, c::IPPROTO_IPV6, IPV6_ADD_MEMBERSHIP, mreq) } pub fn leave_multicast_v4(&self, multiaddr: &Ipv4Addr, interface: &Ipv4Addr) -> io::Result<()> { let mreq = c::ip_mreq { imr_multiaddr: ip_v4_addr_to_c(multiaddr), imr_interface: ip_v4_addr_to_c(interface), }; setsockopt(&self.inner, c::IPPROTO_IP, c::IP_DROP_MEMBERSHIP, mreq) } pub fn leave_multicast_v6(&self, multiaddr: &Ipv6Addr, interface: u32) -> io::Result<()> { let mreq = c::ipv6_mreq { ipv6mr_multiaddr: ip_v6_addr_to_c(multiaddr), ipv6mr_interface: to_ipv6mr_interface(interface), }; setsockopt(&self.inner, c::IPPROTO_IPV6, IPV6_DROP_MEMBERSHIP, mreq) } pub fn set_ttl(&self, ttl: u32) -> io::Result<()> { setsockopt(&self.inner, c::IPPROTO_IP, c::IP_TTL, ttl as c_int) } pub fn ttl(&self) -> io::Result { let raw: c_int = getsockopt(&self.inner, c::IPPROTO_IP, c::IP_TTL)?; Ok(raw as u32) } pub fn take_error(&self) -> io::Result> { self.inner.take_error() } pub fn set_nonblocking(&self, nonblocking: bool) -> io::Result<()> { self.inner.set_nonblocking(nonblocking) } pub fn recv(&self, buf: &mut [u8]) -> io::Result { self.inner.read(buf) } pub fn peek(&self, buf: &mut [u8]) -> io::Result { self.inner.peek(buf) } pub fn send(&self, buf: &[u8]) -> io::Result { let len = cmp::min(buf.len(), ::MAX as usize) as wrlen_t; let ret = cvt(unsafe { c::send(self.inner.as_raw(), buf.as_ptr() as *const c_void, len, MSG_NOSIGNAL) })?; Ok(ret as usize) } pub fn connect(&self, addr: A) -> io::Result<()> { return each_addr(addr, |addr| inner(self, addr)); fn inner(this: &UdpSocket, addr: &SocketAddr) -> io::Result<()> { let (addr, len) = socket_addr_to_c(addr); cvt_r(|| unsafe { c::connect(this.inner.as_raw(), addr.as_ptr(), len) }).map(drop) } } } impl FromInner for UdpSocket { fn from_inner(socket: Socket) -> UdpSocket { UdpSocket { inner: socket } } } impl fmt::Debug for UdpSocket { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { let mut res = f.debug_struct("UdpSocket"); if let Ok(addr) = self.socket_addr() { res.field("addr", &addr); } let name = if cfg!(windows) { "socket" } else { "fd" }; res.field(name, &self.inner.as_raw()).finish() } }