#![unstable(issue = "none", feature = "windows_net")] use core::ffi::{c_int, c_long, c_ulong, c_ushort}; use super::{getsockopt, setsockopt, socket_addr_from_c, socket_addr_to_c}; use crate::io::{self, BorrowedBuf, BorrowedCursor, IoSlice, IoSliceMut, Read}; use crate::net::{Shutdown, SocketAddr}; use crate::os::windows::io::{ AsRawSocket, AsSocket, BorrowedSocket, FromRawSocket, IntoRawSocket, OwnedSocket, RawSocket, }; use crate::sync::atomic::Atomic; use crate::sync::atomic::Ordering::{AcqRel, Relaxed}; use crate::sys::c; use crate::sys_common::{AsInner, FromInner, IntoInner}; use crate::time::Duration; use crate::{cmp, mem, ptr, sys}; #[allow(non_camel_case_types)] pub type wrlen_t = i32; pub(super) mod netc { //! BSD socket compatibility shim //! //! Some Windows API types are not quite what's expected by our cross-platform //! net code. E.g. naming differences or different pointer types. use core::ffi::{c_char, c_int, c_uint, c_ulong, c_ushort, c_void}; use crate::sys::c::{self, ADDRESS_FAMILY, ADDRINFOA, SOCKADDR, SOCKET}; // re-exports from Windows API bindings. pub use crate::sys::c::{ ADDRESS_FAMILY as sa_family_t, ADDRINFOA as addrinfo, IP_ADD_MEMBERSHIP, IP_DROP_MEMBERSHIP, IP_MULTICAST_LOOP, IP_MULTICAST_TTL, IP_TTL, IPPROTO_IP, IPPROTO_IPV6, IPV6_ADD_MEMBERSHIP, IPV6_DROP_MEMBERSHIP, IPV6_MULTICAST_LOOP, IPV6_V6ONLY, SO_BROADCAST, SO_RCVTIMEO, SO_SNDTIMEO, SOCK_DGRAM, SOCK_STREAM, SOCKADDR as sockaddr, SOCKADDR_STORAGE as sockaddr_storage, SOL_SOCKET, bind, connect, freeaddrinfo, getpeername, getsockname, getsockopt, listen, setsockopt, }; #[allow(non_camel_case_types)] pub type socklen_t = c_int; pub const AF_INET: i32 = c::AF_INET as i32; pub const AF_INET6: i32 = c::AF_INET6 as i32; // The following two structs use a union in the generated bindings but // our cross-platform code expects a normal field so it's redefined here. // As a consequence, we also need to redefine other structs that use this struct. #[repr(C)] #[derive(Copy, Clone)] pub struct in_addr { pub s_addr: u32, } #[repr(C)] #[derive(Copy, Clone)] pub struct in6_addr { pub s6_addr: [u8; 16], } #[repr(C)] pub struct ip_mreq { pub imr_multiaddr: in_addr, pub imr_interface: in_addr, } #[repr(C)] pub struct ipv6_mreq { pub ipv6mr_multiaddr: in6_addr, pub ipv6mr_interface: c_uint, } #[repr(C)] #[derive(Copy, Clone)] pub struct sockaddr_in { pub sin_family: ADDRESS_FAMILY, pub sin_port: c_ushort, pub sin_addr: in_addr, pub sin_zero: [c_char; 8], } #[repr(C)] #[derive(Copy, Clone)] pub struct sockaddr_in6 { pub sin6_family: ADDRESS_FAMILY, pub sin6_port: c_ushort, pub sin6_flowinfo: c_ulong, pub sin6_addr: in6_addr, pub sin6_scope_id: c_ulong, } pub unsafe fn send(socket: SOCKET, buf: *const c_void, len: c_int, flags: c_int) -> c_int { unsafe { c::send(socket, buf.cast::(), len, flags) } } pub unsafe fn sendto( socket: SOCKET, buf: *const c_void, len: c_int, flags: c_int, addr: *const SOCKADDR, addrlen: c_int, ) -> c_int { unsafe { c::sendto(socket, buf.cast::(), len, flags, addr, addrlen) } } pub unsafe fn getaddrinfo( node: *const c_char, service: *const c_char, hints: *const ADDRINFOA, res: *mut *mut ADDRINFOA, ) -> c_int { unsafe { c::getaddrinfo(node.cast::(), service.cast::(), hints, res) } } } #[expect(missing_debug_implementations)] pub struct Socket(OwnedSocket); static WSA_INITIALIZED: Atomic = Atomic::::new(false); /// Checks whether the Windows socket interface has been started already, and /// if not, starts it. #[inline] pub fn init() { if !WSA_INITIALIZED.load(Relaxed) { wsa_startup(); } } #[cold] fn wsa_startup() { unsafe { let mut data: c::WSADATA = mem::zeroed(); let ret = c::WSAStartup( 0x202, // version 2.2 &mut data, ); assert_eq!(ret, 0); if WSA_INITIALIZED.swap(true, AcqRel) { // If another thread raced with us and called WSAStartup first then call // WSACleanup so it's as though WSAStartup was only called once. c::WSACleanup(); } } } pub fn cleanup() { // We don't need to call WSACleanup here because exiting the process will cause // the OS to clean everything for us, which is faster than doing it manually. // See #141799. } /// Returns the last error from the Windows socket interface. fn last_error() -> io::Error { io::Error::from_raw_os_error(unsafe { c::WSAGetLastError() }) } #[doc(hidden)] pub trait IsMinusOne { fn is_minus_one(&self) -> bool; } macro_rules! impl_is_minus_one { ($($t:ident)*) => ($(impl IsMinusOne for $t { fn is_minus_one(&self) -> bool { *self == -1 } })*) } impl_is_minus_one! { i8 i16 i32 i64 isize } /// Checks if the signed integer is the Windows constant `SOCKET_ERROR` (-1) /// and if so, returns the last error from the Windows socket interface. This /// function must be called before another call to the socket API is made. pub fn cvt(t: T) -> io::Result { if t.is_minus_one() { Err(last_error()) } else { Ok(t) } } /// A variant of `cvt` for `getaddrinfo` which return 0 for a success. pub fn cvt_gai(err: c_int) -> io::Result<()> { if err == 0 { Ok(()) } else { Err(last_error()) } } /// Just to provide the same interface as sys/pal/unix/net.rs pub fn cvt_r(mut f: F) -> io::Result where T: IsMinusOne, F: FnMut() -> T, { cvt(f()) } impl Socket { pub fn new(addr: &SocketAddr, ty: c_int) -> io::Result { let family = match *addr { SocketAddr::V4(..) => netc::AF_INET, SocketAddr::V6(..) => netc::AF_INET6, }; let socket = unsafe { c::WSASocketW( family, ty, 0, ptr::null_mut(), 0, c::WSA_FLAG_OVERLAPPED | c::WSA_FLAG_NO_HANDLE_INHERIT, ) }; if socket != c::INVALID_SOCKET { unsafe { Ok(Self::from_raw(socket)) } } else { let error = unsafe { c::WSAGetLastError() }; if error != c::WSAEPROTOTYPE && error != c::WSAEINVAL { return Err(io::Error::from_raw_os_error(error)); } let socket = unsafe { c::WSASocketW(family, ty, 0, ptr::null_mut(), 0, c::WSA_FLAG_OVERLAPPED) }; if socket == c::INVALID_SOCKET { return Err(last_error()); } unsafe { let socket = Self::from_raw(socket); socket.0.set_no_inherit()?; Ok(socket) } } } pub fn connect(&self, addr: &SocketAddr) -> io::Result<()> { let (addr, len) = socket_addr_to_c(addr); let result = unsafe { c::connect(self.as_raw(), addr.as_ptr(), len) }; cvt(result).map(drop) } pub fn connect_timeout(&self, addr: &SocketAddr, timeout: Duration) -> io::Result<()> { self.set_nonblocking(true)?; let result = self.connect(addr); self.set_nonblocking(false)?; match result { Err(ref error) if error.kind() == io::ErrorKind::WouldBlock => { if timeout.as_secs() == 0 && timeout.subsec_nanos() == 0 { return Err(io::Error::ZERO_TIMEOUT); } let mut timeout = c::TIMEVAL { tv_sec: cmp::min(timeout.as_secs(), c_long::MAX as u64) as c_long, tv_usec: timeout.subsec_micros() as c_long, }; if timeout.tv_sec == 0 && timeout.tv_usec == 0 { timeout.tv_usec = 1; } let fds = { let mut fds = unsafe { mem::zeroed::() }; fds.fd_count = 1; fds.fd_array[0] = self.as_raw(); fds }; let mut writefds = fds; let mut errorfds = fds; let count = { let result = unsafe { c::select(1, ptr::null_mut(), &mut writefds, &mut errorfds, &timeout) }; cvt(result)? }; match count { 0 => Err(io::const_error!(io::ErrorKind::TimedOut, "connection timed out")), _ => { if writefds.fd_count != 1 { if let Some(e) = self.take_error()? { return Err(e); } } Ok(()) } } } _ => result, } } pub fn accept(&self, storage: *mut c::SOCKADDR, len: *mut c_int) -> io::Result { let socket = unsafe { c::accept(self.as_raw(), storage, len) }; match socket { c::INVALID_SOCKET => Err(last_error()), _ => unsafe { Ok(Self::from_raw(socket)) }, } } pub fn duplicate(&self) -> io::Result { Ok(Self(self.0.try_clone()?)) } fn recv_with_flags(&self, mut buf: BorrowedCursor<'_>, flags: c_int) -> io::Result<()> { // On unix when a socket is shut down all further reads return 0, so we // do the same on windows to map a shut down socket to returning EOF. let length = cmp::min(buf.capacity(), i32::MAX as usize) as i32; let result = unsafe { c::recv(self.as_raw(), buf.as_mut().as_mut_ptr() as *mut _, length, flags) }; match result { c::SOCKET_ERROR => { let error = unsafe { c::WSAGetLastError() }; if error == c::WSAESHUTDOWN { Ok(()) } else { Err(io::Error::from_raw_os_error(error)) } } _ => { unsafe { buf.advance_unchecked(result as usize) }; Ok(()) } } } pub fn read(&self, buf: &mut [u8]) -> io::Result { let mut buf = BorrowedBuf::from(buf); self.recv_with_flags(buf.unfilled(), 0)?; Ok(buf.len()) } pub fn read_buf(&self, buf: BorrowedCursor<'_>) -> io::Result<()> { self.recv_with_flags(buf, 0) } pub fn read_vectored(&self, bufs: &mut [IoSliceMut<'_>]) -> io::Result { // On unix when a socket is shut down all further reads return 0, so we // do the same on windows to map a shut down socket to returning EOF. let length = cmp::min(bufs.len(), u32::MAX as usize) as u32; let mut nread = 0; let mut flags = 0; let result = unsafe { c::WSARecv( self.as_raw(), bufs.as_mut_ptr() as *mut c::WSABUF, length, &mut nread, &mut flags, ptr::null_mut(), None, ) }; match result { 0 => Ok(nread as usize), _ => { let error = unsafe { c::WSAGetLastError() }; if error == c::WSAESHUTDOWN { Ok(0) } else { Err(io::Error::from_raw_os_error(error)) } } } } #[inline] pub fn is_read_vectored(&self) -> bool { true } pub fn peek(&self, buf: &mut [u8]) -> io::Result { let mut buf = BorrowedBuf::from(buf); self.recv_with_flags(buf.unfilled(), c::MSG_PEEK)?; Ok(buf.len()) } fn recv_from_with_flags( &self, buf: &mut [u8], flags: c_int, ) -> io::Result<(usize, SocketAddr)> { let mut storage = unsafe { mem::zeroed::() }; let mut addrlen = size_of_val(&storage) as netc::socklen_t; let length = cmp::min(buf.len(), ::MAX as usize) as wrlen_t; // On unix when a socket is shut down all further reads return 0, so we // do the same on windows to map a shut down socket to returning EOF. let result = unsafe { c::recvfrom( self.as_raw(), buf.as_mut_ptr() as *mut _, length, flags, (&raw mut storage) as *mut _, &mut addrlen, ) }; match result { c::SOCKET_ERROR => { let error = unsafe { c::WSAGetLastError() }; if error == c::WSAESHUTDOWN { Ok((0, unsafe { socket_addr_from_c(&storage, addrlen as usize)? })) } else { Err(io::Error::from_raw_os_error(error)) } } _ => Ok((result as usize, unsafe { socket_addr_from_c(&storage, addrlen as usize)? })), } } pub fn recv_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> { self.recv_from_with_flags(buf, 0) } pub fn peek_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> { self.recv_from_with_flags(buf, c::MSG_PEEK) } pub fn write_vectored(&self, bufs: &[IoSlice<'_>]) -> io::Result { let length = cmp::min(bufs.len(), u32::MAX as usize) as u32; let mut nwritten = 0; let result = unsafe { c::WSASend( self.as_raw(), bufs.as_ptr() as *const c::WSABUF as *mut _, length, &mut nwritten, 0, ptr::null_mut(), None, ) }; cvt(result).map(|_| nwritten as usize) } #[inline] pub fn is_write_vectored(&self) -> bool { true } pub fn set_timeout(&self, dur: Option, kind: c_int) -> io::Result<()> { let timeout = match dur { Some(dur) => { let timeout = sys::dur2timeout(dur); if timeout == 0 { return Err(io::Error::ZERO_TIMEOUT); } timeout } None => 0, }; setsockopt(self, c::SOL_SOCKET, kind, timeout) } pub fn timeout(&self, kind: c_int) -> io::Result> { let raw: u32 = getsockopt(self, c::SOL_SOCKET, kind)?; if raw == 0 { Ok(None) } else { let secs = raw / 1000; let nsec = (raw % 1000) * 1000000; Ok(Some(Duration::new(secs as u64, nsec as u32))) } } pub fn shutdown(&self, how: Shutdown) -> io::Result<()> { let how = match how { Shutdown::Write => c::SD_SEND, Shutdown::Read => c::SD_RECEIVE, Shutdown::Both => c::SD_BOTH, }; let result = unsafe { c::shutdown(self.as_raw(), how) }; cvt(result).map(drop) } pub fn set_nonblocking(&self, nonblocking: bool) -> io::Result<()> { let mut nonblocking = nonblocking as c_ulong; let result = unsafe { c::ioctlsocket(self.as_raw(), c::FIONBIO as c_int, &mut nonblocking) }; cvt(result).map(drop) } pub fn set_linger(&self, linger: Option) -> io::Result<()> { let linger = c::LINGER { l_onoff: linger.is_some() as c_ushort, l_linger: linger.unwrap_or_default().as_secs() as c_ushort, }; setsockopt(self, c::SOL_SOCKET, c::SO_LINGER, linger) } pub fn linger(&self) -> io::Result> { let val: c::LINGER = getsockopt(self, c::SOL_SOCKET, c::SO_LINGER)?; Ok((val.l_onoff != 0).then(|| Duration::from_secs(val.l_linger as u64))) } pub fn set_nodelay(&self, nodelay: bool) -> io::Result<()> { setsockopt(self, c::IPPROTO_TCP, c::TCP_NODELAY, nodelay as c::BOOL) } pub fn nodelay(&self) -> io::Result { let raw: c::BOOL = getsockopt(self, c::IPPROTO_TCP, c::TCP_NODELAY)?; Ok(raw != 0) } pub fn take_error(&self) -> io::Result> { let raw: c_int = getsockopt(self, c::SOL_SOCKET, c::SO_ERROR)?; if raw == 0 { Ok(None) } else { Ok(Some(io::Error::from_raw_os_error(raw as i32))) } } // This is used by sys_common code to abstract over Windows and Unix. pub fn as_raw(&self) -> c::SOCKET { debug_assert_eq!(size_of::(), size_of::()); debug_assert_eq!(align_of::(), align_of::()); self.as_inner().as_raw_socket() as c::SOCKET } pub unsafe fn from_raw(raw: c::SOCKET) -> Self { debug_assert_eq!(size_of::(), size_of::()); debug_assert_eq!(align_of::(), align_of::()); unsafe { Self::from_raw_socket(raw as RawSocket) } } } #[unstable(reason = "not public", issue = "none", feature = "fd_read")] impl<'a> Read for &'a Socket { fn read(&mut self, buf: &mut [u8]) -> io::Result { (**self).read(buf) } } impl AsInner for Socket { #[inline] fn as_inner(&self) -> &OwnedSocket { &self.0 } } impl FromInner for Socket { fn from_inner(sock: OwnedSocket) -> Socket { Socket(sock) } } impl IntoInner for Socket { fn into_inner(self) -> OwnedSocket { self.0 } } impl AsSocket for Socket { fn as_socket(&self) -> BorrowedSocket<'_> { self.0.as_socket() } } impl AsRawSocket for Socket { fn as_raw_socket(&self) -> RawSocket { self.0.as_raw_socket() } } impl IntoRawSocket for Socket { fn into_raw_socket(self) -> RawSocket { self.0.into_raw_socket() } } impl FromRawSocket for Socket { unsafe fn from_raw_socket(raw_socket: RawSocket) -> Self { unsafe { Self(FromRawSocket::from_raw_socket(raw_socket)) } } }