use crate::fmt; use crate::io::{self, Error, ErrorKind}; use crate::mem; use crate::num::NonZeroI32; use crate::sys; use crate::sys::cvt; use crate::sys::process::process_common::*; use core::ffi::NonZero_c_int; #[cfg(target_os = "linux")] use crate::os::linux::process::PidFd; #[cfg(any( target_os = "macos", target_os = "watchos", target_os = "tvos", target_os = "freebsd", all(target_os = "linux", target_env = "gnu"), all(target_os = "linux", target_env = "musl"), target_os = "nto", ))] use crate::sys::weak::weak; #[cfg(target_os = "vxworks")] use libc::RTP_ID as pid_t; #[cfg(not(target_os = "vxworks"))] use libc::{c_int, pid_t}; #[cfg(not(any( target_os = "vxworks", target_os = "l4re", target_os = "tvos", target_os = "watchos", )))] use libc::{gid_t, uid_t}; cfg_if::cfg_if! { if #[cfg(all(target_os = "nto", target_env = "nto71"))] { use crate::thread; use libc::{c_char, posix_spawn_file_actions_t, posix_spawnattr_t}; use crate::time::Duration; use crate::sync::LazyLock; // Get smallest amount of time we can sleep. // Return a common value if it cannot be determined. fn get_clock_resolution() -> Duration { static MIN_DELAY: LazyLock Duration> = LazyLock::new(|| { let mut mindelay = libc::timespec { tv_sec: 0, tv_nsec: 0 }; if unsafe { libc::clock_getres(libc::CLOCK_MONOTONIC, &mut mindelay) } == 0 { Duration::from_nanos(mindelay.tv_nsec as u64) } else { Duration::from_millis(1) } }); *MIN_DELAY } // Arbitrary minimum sleep duration for retrying fork/spawn const MIN_FORKSPAWN_SLEEP: Duration = Duration::from_nanos(1); // Maximum duration of sleeping before giving up and returning an error const MAX_FORKSPAWN_SLEEP: Duration = Duration::from_millis(1000); } } //////////////////////////////////////////////////////////////////////////////// // Command //////////////////////////////////////////////////////////////////////////////// impl Command { pub fn spawn( &mut self, default: Stdio, needs_stdin: bool, ) -> io::Result<(Process, StdioPipes)> { const CLOEXEC_MSG_FOOTER: [u8; 4] = *b"NOEX"; let envp = self.capture_env(); if self.saw_nul() { return Err(io::const_io_error!( ErrorKind::InvalidInput, "nul byte found in provided data", )); } let (ours, theirs) = self.setup_io(default, needs_stdin)?; if let Some(ret) = self.posix_spawn(&theirs, envp.as_ref())? { return Ok((ret, ours)); } #[cfg(target_os = "linux")] let (input, output) = sys::net::Socket::new_pair(libc::AF_UNIX, libc::SOCK_SEQPACKET)?; #[cfg(not(target_os = "linux"))] let (input, output) = sys::pipe::anon_pipe()?; // Whatever happens after the fork is almost for sure going to touch or // look at the environment in one way or another (PATH in `execvp` or // accessing the `environ` pointer ourselves). Make sure no other thread // is accessing the environment when we do the fork itself. // // Note that as soon as we're done with the fork there's no need to hold // a lock any more because the parent won't do anything and the child is // in its own process. Thus the parent drops the lock guard immediately. // The child calls `mem::forget` to leak the lock, which is crucial because // releasing a lock is not async-signal-safe. let env_lock = sys::os::env_read_lock(); let pid = unsafe { self.do_fork()? }; if pid == 0 { crate::panic::always_abort(); mem::forget(env_lock); // avoid non-async-signal-safe unlocking drop(input); #[cfg(target_os = "linux")] if self.get_create_pidfd() { self.send_pidfd(&output); } let Err(err) = unsafe { self.do_exec(theirs, envp.as_ref()) }; let errno = err.raw_os_error().unwrap_or(libc::EINVAL) as u32; let errno = errno.to_be_bytes(); let bytes = [ errno[0], errno[1], errno[2], errno[3], CLOEXEC_MSG_FOOTER[0], CLOEXEC_MSG_FOOTER[1], CLOEXEC_MSG_FOOTER[2], CLOEXEC_MSG_FOOTER[3], ]; // pipe I/O up to PIPE_BUF bytes should be atomic, and then // we want to be sure we *don't* run at_exit destructors as // we're being torn down regardless rtassert!(output.write(&bytes).is_ok()); unsafe { libc::_exit(1) } } drop(env_lock); drop(output); #[cfg(target_os = "linux")] let pidfd = if self.get_create_pidfd() { self.recv_pidfd(&input) } else { -1 }; #[cfg(not(target_os = "linux"))] let pidfd = -1; // Safety: We obtained the pidfd from calling `clone3` with // `CLONE_PIDFD` so it's valid an otherwise unowned. let mut p = unsafe { Process::new(pid, pidfd) }; let mut bytes = [0; 8]; // loop to handle EINTR loop { match input.read(&mut bytes) { Ok(0) => return Ok((p, ours)), Ok(8) => { let (errno, footer) = bytes.split_at(4); assert_eq!( CLOEXEC_MSG_FOOTER, footer, "Validation on the CLOEXEC pipe failed: {:?}", bytes ); let errno = i32::from_be_bytes(errno.try_into().unwrap()); assert!(p.wait().is_ok(), "wait() should either return Ok or panic"); return Err(Error::from_raw_os_error(errno)); } Err(ref e) if e.kind() == ErrorKind::Interrupted => {} Err(e) => { assert!(p.wait().is_ok(), "wait() should either return Ok or panic"); panic!("the CLOEXEC pipe failed: {e:?}") } Ok(..) => { // pipe I/O up to PIPE_BUF bytes should be atomic // similarly SOCK_SEQPACKET messages should arrive whole assert!(p.wait().is_ok(), "wait() should either return Ok or panic"); panic!("short read on the CLOEXEC pipe") } } } } pub fn output(&mut self) -> io::Result<(ExitStatus, Vec, Vec)> { let (proc, pipes) = self.spawn(Stdio::MakePipe, false)?; crate::sys_common::process::wait_with_output(proc, pipes) } // WatchOS and TVOS headers mark the `fork`/`exec*` functions with // `__WATCHOS_PROHIBITED __TVOS_PROHIBITED`, and indicate that the // `posix_spawn*` functions should be used instead. It isn't entirely clear // what `PROHIBITED` means here (e.g. if calls to these functions are // allowed to exist in dead code), but it sounds bad, so we go out of our // way to avoid that all-together. #[cfg(any(target_os = "tvos", target_os = "watchos"))] const ERR_APPLE_TV_WATCH_NO_FORK_EXEC: Error = io::const_io_error!( ErrorKind::Unsupported, "`fork`+`exec`-based process spawning is not supported on this target", ); #[cfg(any(target_os = "tvos", target_os = "watchos"))] unsafe fn do_fork(&mut self) -> Result { return Err(Self::ERR_APPLE_TV_WATCH_NO_FORK_EXEC); } // Attempts to fork the process. If successful, returns Ok((0, -1)) // in the child, and Ok((child_pid, -1)) in the parent. #[cfg(not(any( target_os = "watchos", target_os = "tvos", all(target_os = "nto", target_env = "nto71"), )))] unsafe fn do_fork(&mut self) -> Result { cvt(libc::fork()) } // On QNX Neutrino, fork can fail with EBADF in case "another thread might have opened // or closed a file descriptor while the fork() was occurring". // Documentation says "... or try calling fork() again". This is what we do here. // See also https://www.qnx.com/developers/docs/7.1/#com.qnx.doc.neutrino.lib_ref/topic/f/fork.html #[cfg(all(target_os = "nto", target_env = "nto71"))] unsafe fn do_fork(&mut self) -> Result { use crate::sys::os::errno; let mut delay = MIN_FORKSPAWN_SLEEP; loop { let r = libc::fork(); if r == -1 as libc::pid_t && errno() as libc::c_int == libc::EBADF { if delay < get_clock_resolution() { // We cannot sleep this short (it would be longer). // Yield instead. thread::yield_now(); } else if delay < MAX_FORKSPAWN_SLEEP { thread::sleep(delay); } else { return Err(io::const_io_error!( ErrorKind::WouldBlock, "forking returned EBADF too often", )); } delay *= 2; continue; } else { return cvt(r); } } } pub fn exec(&mut self, default: Stdio) -> io::Error { let envp = self.capture_env(); if self.saw_nul() { return io::const_io_error!(ErrorKind::InvalidInput, "nul byte found in provided data",); } match self.setup_io(default, true) { Ok((_, theirs)) => { unsafe { // Similar to when forking, we want to ensure that access to // the environment is synchronized, so make sure to grab the // environment lock before we try to exec. let _lock = sys::os::env_read_lock(); let Err(e) = self.do_exec(theirs, envp.as_ref()); e } } Err(e) => e, } } // And at this point we've reached a special time in the life of the // child. The child must now be considered hamstrung and unable to // do anything other than syscalls really. Consider the following // scenario: // // 1. Thread A of process 1 grabs the malloc() mutex // 2. Thread B of process 1 forks(), creating thread C // 3. Thread C of process 2 then attempts to malloc() // 4. The memory of process 2 is the same as the memory of // process 1, so the mutex is locked. // // This situation looks a lot like deadlock, right? It turns out // that this is what pthread_atfork() takes care of, which is // presumably implemented across platforms. The first thing that // threads to *before* forking is to do things like grab the malloc // mutex, and then after the fork they unlock it. // // Despite this information, libnative's spawn has been witnessed to // deadlock on both macOS and FreeBSD. I'm not entirely sure why, but // all collected backtraces point at malloc/free traffic in the // child spawned process. // // For this reason, the block of code below should contain 0 // invocations of either malloc of free (or their related friends). // // As an example of not having malloc/free traffic, we don't close // this file descriptor by dropping the FileDesc (which contains an // allocation). Instead we just close it manually. This will never // have the drop glue anyway because this code never returns (the // child will either exec() or invoke libc::exit) #[cfg(not(any(target_os = "tvos", target_os = "watchos")))] unsafe fn do_exec( &mut self, stdio: ChildPipes, maybe_envp: Option<&CStringArray>, ) -> Result { use crate::sys::{self, cvt_r}; if let Some(fd) = stdio.stdin.fd() { cvt_r(|| libc::dup2(fd, libc::STDIN_FILENO))?; } if let Some(fd) = stdio.stdout.fd() { cvt_r(|| libc::dup2(fd, libc::STDOUT_FILENO))?; } if let Some(fd) = stdio.stderr.fd() { cvt_r(|| libc::dup2(fd, libc::STDERR_FILENO))?; } #[cfg(not(target_os = "l4re"))] { if let Some(_g) = self.get_groups() { //FIXME: Redox kernel does not support setgroups yet #[cfg(not(target_os = "redox"))] cvt(libc::setgroups(_g.len().try_into().unwrap(), _g.as_ptr()))?; } if let Some(u) = self.get_gid() { cvt(libc::setgid(u as gid_t))?; } if let Some(u) = self.get_uid() { // When dropping privileges from root, the `setgroups` call // will remove any extraneous groups. We only drop groups // if the current uid is 0 and we weren't given an explicit // set of groups. If we don't call this, then even though our // uid has dropped, we may still have groups that enable us to // do super-user things. //FIXME: Redox kernel does not support setgroups yet #[cfg(not(target_os = "redox"))] if libc::getuid() == 0 && self.get_groups().is_none() { cvt(libc::setgroups(0, crate::ptr::null()))?; } cvt(libc::setuid(u as uid_t))?; } } if let Some(ref cwd) = *self.get_cwd() { cvt(libc::chdir(cwd.as_ptr()))?; } if let Some(pgroup) = self.get_pgroup() { cvt(libc::setpgid(0, pgroup))?; } // emscripten has no signal support. #[cfg(not(target_os = "emscripten"))] { // Inherit the signal mask from the parent rather than resetting it (i.e. do not call // pthread_sigmask). // If #[unix_sigpipe] is specified, don't reset SIGPIPE to SIG_DFL. // If #[unix_sigpipe] is not specified, reset SIGPIPE to SIG_DFL for backward compatibility. // // #[unix_sigpipe] is an opportunity to change the default here. if !crate::sys::unix_sigpipe_attr_specified() { #[cfg(target_os = "android")] // see issue #88585 { let mut action: libc::sigaction = mem::zeroed(); action.sa_sigaction = libc::SIG_DFL; cvt(libc::sigaction(libc::SIGPIPE, &action, crate::ptr::null_mut()))?; } #[cfg(not(target_os = "android"))] { let ret = sys::signal(libc::SIGPIPE, libc::SIG_DFL); if ret == libc::SIG_ERR { return Err(io::Error::last_os_error()); } } } } for callback in self.get_closures().iter_mut() { callback()?; } // Although we're performing an exec here we may also return with an // error from this function (without actually exec'ing) in which case we // want to be sure to restore the global environment back to what it // once was, ensuring that our temporary override, when free'd, doesn't // corrupt our process's environment. let mut _reset = None; if let Some(envp) = maybe_envp { struct Reset(*const *const libc::c_char); impl Drop for Reset { fn drop(&mut self) { unsafe { *sys::os::environ() = self.0; } } } _reset = Some(Reset(*sys::os::environ())); *sys::os::environ() = envp.as_ptr(); } libc::execvp(self.get_program_cstr().as_ptr(), self.get_argv().as_ptr()); Err(io::Error::last_os_error()) } #[cfg(any(target_os = "tvos", target_os = "watchos"))] unsafe fn do_exec( &mut self, _stdio: ChildPipes, _maybe_envp: Option<&CStringArray>, ) -> Result { return Err(Self::ERR_APPLE_TV_WATCH_NO_FORK_EXEC); } #[cfg(not(any( target_os = "macos", target_os = "tvos", target_os = "watchos", target_os = "freebsd", all(target_os = "linux", target_env = "gnu"), all(target_os = "linux", target_env = "musl"), target_os = "nto", )))] fn posix_spawn( &mut self, _: &ChildPipes, _: Option<&CStringArray>, ) -> io::Result> { Ok(None) } // Only support platforms for which posix_spawn() can return ENOENT // directly. #[cfg(any( target_os = "macos", // FIXME: `target_os = "ios"`? target_os = "tvos", target_os = "watchos", target_os = "freebsd", all(target_os = "linux", target_env = "gnu"), all(target_os = "linux", target_env = "musl"), target_os = "nto", ))] fn posix_spawn( &mut self, stdio: &ChildPipes, envp: Option<&CStringArray>, ) -> io::Result> { use crate::mem::MaybeUninit; use crate::sys::{self, cvt_nz, unix_sigpipe_attr_specified}; if self.get_gid().is_some() || self.get_uid().is_some() || (self.env_saw_path() && !self.program_is_path()) || !self.get_closures().is_empty() || self.get_groups().is_some() || self.get_create_pidfd() { return Ok(None); } // Only glibc 2.24+ posix_spawn() supports returning ENOENT directly. #[cfg(all(target_os = "linux", target_env = "gnu"))] { if let Some(version) = sys::os::glibc_version() { if version < (2, 24) { return Ok(None); } } else { return Ok(None); } } // On QNX Neutrino, posix_spawnp can fail with EBADF in case "another thread might have opened // or closed a file descriptor while the posix_spawn() was occurring". // Documentation says "... or try calling posix_spawn() again". This is what we do here. // See also http://www.qnx.com/developers/docs/7.1/#com.qnx.doc.neutrino.lib_ref/topic/p/posix_spawn.html #[cfg(all(target_os = "nto", target_env = "nto71"))] unsafe fn retrying_libc_posix_spawnp( pid: *mut pid_t, file: *const c_char, file_actions: *const posix_spawn_file_actions_t, attrp: *const posix_spawnattr_t, argv: *const *mut c_char, envp: *const *mut c_char, ) -> io::Result { let mut delay = MIN_FORKSPAWN_SLEEP; loop { match libc::posix_spawnp(pid, file, file_actions, attrp, argv, envp) { libc::EBADF => { if delay < get_clock_resolution() { // We cannot sleep this short (it would be longer). // Yield instead. thread::yield_now(); } else if delay < MAX_FORKSPAWN_SLEEP { thread::sleep(delay); } else { return Err(io::const_io_error!( ErrorKind::WouldBlock, "posix_spawnp returned EBADF too often", )); } delay *= 2; continue; } r => { return Ok(r); } } } } // Solaris, glibc 2.29+, and musl 1.24+ can set a new working directory, // and maybe others will gain this non-POSIX function too. We'll check // for this weak symbol as soon as it's needed, so we can return early // otherwise to do a manual chdir before exec. weak! { fn posix_spawn_file_actions_addchdir_np( *mut libc::posix_spawn_file_actions_t, *const libc::c_char ) -> libc::c_int } let addchdir = match self.get_cwd() { Some(cwd) => { if cfg!(any(target_os = "macos", target_os = "tvos", target_os = "watchos")) { // There is a bug in macOS where a relative executable // path like "../myprogram" will cause `posix_spawn` to // successfully launch the program, but erroneously return // ENOENT when used with posix_spawn_file_actions_addchdir_np // which was introduced in macOS 10.15. if self.get_program_kind() == ProgramKind::Relative { return Ok(None); } } match posix_spawn_file_actions_addchdir_np.get() { Some(f) => Some((f, cwd)), None => return Ok(None), } } None => None, }; let pgroup = self.get_pgroup(); // Safety: -1 indicates we don't have a pidfd. let mut p = unsafe { Process::new(0, -1) }; struct PosixSpawnFileActions<'a>(&'a mut MaybeUninit); impl Drop for PosixSpawnFileActions<'_> { fn drop(&mut self) { unsafe { libc::posix_spawn_file_actions_destroy(self.0.as_mut_ptr()); } } } struct PosixSpawnattr<'a>(&'a mut MaybeUninit); impl Drop for PosixSpawnattr<'_> { fn drop(&mut self) { unsafe { libc::posix_spawnattr_destroy(self.0.as_mut_ptr()); } } } unsafe { let mut attrs = MaybeUninit::uninit(); cvt_nz(libc::posix_spawnattr_init(attrs.as_mut_ptr()))?; let attrs = PosixSpawnattr(&mut attrs); let mut flags = 0; let mut file_actions = MaybeUninit::uninit(); cvt_nz(libc::posix_spawn_file_actions_init(file_actions.as_mut_ptr()))?; let file_actions = PosixSpawnFileActions(&mut file_actions); if let Some(fd) = stdio.stdin.fd() { cvt_nz(libc::posix_spawn_file_actions_adddup2( file_actions.0.as_mut_ptr(), fd, libc::STDIN_FILENO, ))?; } if let Some(fd) = stdio.stdout.fd() { cvt_nz(libc::posix_spawn_file_actions_adddup2( file_actions.0.as_mut_ptr(), fd, libc::STDOUT_FILENO, ))?; } if let Some(fd) = stdio.stderr.fd() { cvt_nz(libc::posix_spawn_file_actions_adddup2( file_actions.0.as_mut_ptr(), fd, libc::STDERR_FILENO, ))?; } if let Some((f, cwd)) = addchdir { cvt_nz(f(file_actions.0.as_mut_ptr(), cwd.as_ptr()))?; } if let Some(pgroup) = pgroup { flags |= libc::POSIX_SPAWN_SETPGROUP; cvt_nz(libc::posix_spawnattr_setpgroup(attrs.0.as_mut_ptr(), pgroup))?; } // Inherit the signal mask from this process rather than resetting it (i.e. do not call // posix_spawnattr_setsigmask). // If #[unix_sigpipe] is specified, don't reset SIGPIPE to SIG_DFL. // If #[unix_sigpipe] is not specified, reset SIGPIPE to SIG_DFL for backward compatibility. // // #[unix_sigpipe] is an opportunity to change the default here. if !unix_sigpipe_attr_specified() { let mut default_set = MaybeUninit::::uninit(); cvt(sigemptyset(default_set.as_mut_ptr()))?; cvt(sigaddset(default_set.as_mut_ptr(), libc::SIGPIPE))?; cvt_nz(libc::posix_spawnattr_setsigdefault( attrs.0.as_mut_ptr(), default_set.as_ptr(), ))?; flags |= libc::POSIX_SPAWN_SETSIGDEF; } cvt_nz(libc::posix_spawnattr_setflags(attrs.0.as_mut_ptr(), flags as _))?; // Make sure we synchronize access to the global `environ` resource let _env_lock = sys::os::env_read_lock(); let envp = envp.map(|c| c.as_ptr()).unwrap_or_else(|| *sys::os::environ() as *const _); #[cfg(not(target_os = "nto"))] let spawn_fn = libc::posix_spawnp; #[cfg(target_os = "nto")] let spawn_fn = retrying_libc_posix_spawnp; let spawn_res = spawn_fn( &mut p.pid, self.get_program_cstr().as_ptr(), file_actions.0.as_ptr(), attrs.0.as_ptr(), self.get_argv().as_ptr() as *const _, envp as *const _, ); #[cfg(target_os = "nto")] let spawn_res = spawn_res?; cvt_nz(spawn_res)?; Ok(Some(p)) } } #[cfg(target_os = "linux")] fn send_pidfd(&self, sock: &crate::sys::net::Socket) { use crate::io::IoSlice; use crate::os::fd::RawFd; use crate::sys::cvt_r; use libc::{CMSG_DATA, CMSG_FIRSTHDR, CMSG_LEN, CMSG_SPACE, SCM_RIGHTS, SOL_SOCKET}; unsafe { let child_pid = libc::getpid(); // pidfd_open sets CLOEXEC by default let pidfd = libc::syscall(libc::SYS_pidfd_open, child_pid, 0); let fds: [c_int; 1] = [pidfd as RawFd]; const SCM_MSG_LEN: usize = mem::size_of::<[c_int; 1]>(); #[repr(C)] union Cmsg { buf: [u8; unsafe { CMSG_SPACE(SCM_MSG_LEN as u32) as usize }], _align: libc::cmsghdr, } let mut cmsg: Cmsg = mem::zeroed(); // 0-length message to send through the socket so we can pass along the fd let mut iov = [IoSlice::new(b"")]; let mut msg: libc::msghdr = mem::zeroed(); msg.msg_iov = &mut iov as *mut _ as *mut _; msg.msg_iovlen = 1; msg.msg_controllen = mem::size_of_val(&cmsg.buf) as _; msg.msg_control = &mut cmsg.buf as *mut _ as *mut _; // only attach cmsg if we successfully acquired the pidfd if pidfd >= 0 { let hdr = CMSG_FIRSTHDR(&mut msg as *mut _ as *mut _); (*hdr).cmsg_level = SOL_SOCKET; (*hdr).cmsg_type = SCM_RIGHTS; (*hdr).cmsg_len = CMSG_LEN(SCM_MSG_LEN as _) as _; let data = CMSG_DATA(hdr); crate::ptr::copy_nonoverlapping( fds.as_ptr().cast::(), data as *mut _, SCM_MSG_LEN, ); } // we send the 0-length message even if we failed to acquire the pidfd // so we get a consistent SEQPACKET order match cvt_r(|| libc::sendmsg(sock.as_raw(), &msg, 0)) { Ok(0) => {} _ => rtabort!("failed to communicate with parent process"), } } } #[cfg(target_os = "linux")] fn recv_pidfd(&self, sock: &crate::sys::net::Socket) -> pid_t { use crate::io::IoSliceMut; use crate::sys::cvt_r; use libc::{CMSG_DATA, CMSG_FIRSTHDR, CMSG_LEN, CMSG_SPACE, SCM_RIGHTS, SOL_SOCKET}; unsafe { const SCM_MSG_LEN: usize = mem::size_of::<[c_int; 1]>(); #[repr(C)] union Cmsg { _buf: [u8; unsafe { CMSG_SPACE(SCM_MSG_LEN as u32) as usize }], _align: libc::cmsghdr, } let mut cmsg: Cmsg = mem::zeroed(); // 0-length read to get the fd let mut iov = [IoSliceMut::new(&mut [])]; let mut msg: libc::msghdr = mem::zeroed(); msg.msg_iov = &mut iov as *mut _ as *mut _; msg.msg_iovlen = 1; msg.msg_controllen = mem::size_of::() as _; msg.msg_control = &mut cmsg as *mut _ as *mut _; match cvt_r(|| libc::recvmsg(sock.as_raw(), &mut msg, 0)) { Err(_) => return -1, Ok(_) => {} } let hdr = CMSG_FIRSTHDR(&mut msg as *mut _ as *mut _); if hdr.is_null() || (*hdr).cmsg_level != SOL_SOCKET || (*hdr).cmsg_type != SCM_RIGHTS || (*hdr).cmsg_len != CMSG_LEN(SCM_MSG_LEN as _) as _ { return -1; } let data = CMSG_DATA(hdr); let mut fds = [-1 as c_int]; crate::ptr::copy_nonoverlapping( data as *const _, fds.as_mut_ptr().cast::(), SCM_MSG_LEN, ); fds[0] } } } //////////////////////////////////////////////////////////////////////////////// // Processes //////////////////////////////////////////////////////////////////////////////// /// The unique ID of the process (this should never be negative). pub struct Process { pid: pid_t, status: Option, // On Linux, stores the pidfd created for this child. // This is None if the user did not request pidfd creation, // or if the pidfd could not be created for some reason // (e.g. the `clone3` syscall was not available). #[cfg(target_os = "linux")] pidfd: Option, } impl Process { #[cfg(target_os = "linux")] unsafe fn new(pid: pid_t, pidfd: pid_t) -> Self { use crate::os::unix::io::FromRawFd; use crate::sys_common::FromInner; // Safety: If `pidfd` is nonnegative, we assume it's valid and otherwise unowned. let pidfd = (pidfd >= 0).then(|| PidFd::from_inner(sys::fd::FileDesc::from_raw_fd(pidfd))); Process { pid, status: None, pidfd } } #[cfg(not(target_os = "linux"))] unsafe fn new(pid: pid_t, _pidfd: pid_t) -> Self { Process { pid, status: None } } pub fn id(&self) -> u32 { self.pid as u32 } pub fn kill(&mut self) -> io::Result<()> { // If we've already waited on this process then the pid can be recycled // and used for another process, and we probably shouldn't be killing // random processes, so return Ok because the process has exited already. if self.status.is_some() { Ok(()) } else { cvt(unsafe { libc::kill(self.pid, libc::SIGKILL) }).map(drop) } } pub fn wait(&mut self) -> io::Result { use crate::sys::cvt_r; if let Some(status) = self.status { return Ok(status); } let mut status = 0 as c_int; cvt_r(|| unsafe { libc::waitpid(self.pid, &mut status, 0) })?; self.status = Some(ExitStatus::new(status)); Ok(ExitStatus::new(status)) } pub fn try_wait(&mut self) -> io::Result> { if let Some(status) = self.status { return Ok(Some(status)); } let mut status = 0 as c_int; let pid = cvt(unsafe { libc::waitpid(self.pid, &mut status, libc::WNOHANG) })?; if pid == 0 { Ok(None) } else { self.status = Some(ExitStatus::new(status)); Ok(Some(ExitStatus::new(status))) } } } /// Unix exit statuses // // This is not actually an "exit status" in Unix terminology. Rather, it is a "wait status". // See the discussion in comments and doc comments for `std::process::ExitStatus`. #[derive(PartialEq, Eq, Clone, Copy, Default)] pub struct ExitStatus(c_int); impl fmt::Debug for ExitStatus { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_tuple("unix_wait_status").field(&self.0).finish() } } impl ExitStatus { pub fn new(status: c_int) -> ExitStatus { ExitStatus(status) } fn exited(&self) -> bool { libc::WIFEXITED(self.0) } pub fn exit_ok(&self) -> Result<(), ExitStatusError> { // This assumes that WIFEXITED(status) && WEXITSTATUS==0 corresponds to status==0. This is // true on all actual versions of Unix, is widely assumed, and is specified in SuS // https://pubs.opengroup.org/onlinepubs/9699919799/functions/wait.html. If it is not // true for a platform pretending to be Unix, the tests (our doctests, and also // process_unix/tests.rs) will spot it. `ExitStatusError::code` assumes this too. match NonZero_c_int::try_from(self.0) { /* was nonzero */ Ok(failure) => Err(ExitStatusError(failure)), /* was zero, couldn't convert */ Err(_) => Ok(()), } } pub fn code(&self) -> Option { self.exited().then(|| libc::WEXITSTATUS(self.0)) } pub fn signal(&self) -> Option { libc::WIFSIGNALED(self.0).then(|| libc::WTERMSIG(self.0)) } pub fn core_dumped(&self) -> bool { libc::WIFSIGNALED(self.0) && libc::WCOREDUMP(self.0) } pub fn stopped_signal(&self) -> Option { libc::WIFSTOPPED(self.0).then(|| libc::WSTOPSIG(self.0)) } pub fn continued(&self) -> bool { libc::WIFCONTINUED(self.0) } pub fn into_raw(&self) -> c_int { self.0 } } /// Converts a raw `c_int` to a type-safe `ExitStatus` by wrapping it without copying. impl From for ExitStatus { fn from(a: c_int) -> ExitStatus { ExitStatus(a) } } /// Convert a signal number to a readable, searchable name. /// /// This string should be displayed right after the signal number. /// If a signal is unrecognized, it returns the empty string, so that /// you just get the number like "0". If it is recognized, you'll get /// something like "9 (SIGKILL)". fn signal_string(signal: i32) -> &'static str { match signal { libc::SIGHUP => " (SIGHUP)", libc::SIGINT => " (SIGINT)", libc::SIGQUIT => " (SIGQUIT)", libc::SIGILL => " (SIGILL)", libc::SIGTRAP => " (SIGTRAP)", libc::SIGABRT => " (SIGABRT)", #[cfg(not(target_os = "l4re"))] libc::SIGBUS => " (SIGBUS)", libc::SIGFPE => " (SIGFPE)", libc::SIGKILL => " (SIGKILL)", #[cfg(not(target_os = "l4re"))] libc::SIGUSR1 => " (SIGUSR1)", libc::SIGSEGV => " (SIGSEGV)", #[cfg(not(target_os = "l4re"))] libc::SIGUSR2 => " (SIGUSR2)", libc::SIGPIPE => " (SIGPIPE)", libc::SIGALRM => " (SIGALRM)", libc::SIGTERM => " (SIGTERM)", #[cfg(not(target_os = "l4re"))] libc::SIGCHLD => " (SIGCHLD)", #[cfg(not(target_os = "l4re"))] libc::SIGCONT => " (SIGCONT)", #[cfg(not(target_os = "l4re"))] libc::SIGSTOP => " (SIGSTOP)", #[cfg(not(target_os = "l4re"))] libc::SIGTSTP => " (SIGTSTP)", #[cfg(not(target_os = "l4re"))] libc::SIGTTIN => " (SIGTTIN)", #[cfg(not(target_os = "l4re"))] libc::SIGTTOU => " (SIGTTOU)", #[cfg(not(target_os = "l4re"))] libc::SIGURG => " (SIGURG)", #[cfg(not(target_os = "l4re"))] libc::SIGXCPU => " (SIGXCPU)", #[cfg(not(target_os = "l4re"))] libc::SIGXFSZ => " (SIGXFSZ)", #[cfg(not(target_os = "l4re"))] libc::SIGVTALRM => " (SIGVTALRM)", #[cfg(not(target_os = "l4re"))] libc::SIGPROF => " (SIGPROF)", #[cfg(not(target_os = "l4re"))] libc::SIGWINCH => " (SIGWINCH)", #[cfg(not(any(target_os = "haiku", target_os = "l4re")))] libc::SIGIO => " (SIGIO)", #[cfg(target_os = "haiku")] libc::SIGPOLL => " (SIGPOLL)", #[cfg(not(target_os = "l4re"))] libc::SIGSYS => " (SIGSYS)", // For information on Linux signals, run `man 7 signal` #[cfg(all( target_os = "linux", any( target_arch = "x86_64", target_arch = "x86", target_arch = "arm", target_arch = "aarch64" ) ))] libc::SIGSTKFLT => " (SIGSTKFLT)", #[cfg(any(target_os = "linux", target_os = "nto"))] libc::SIGPWR => " (SIGPWR)", #[cfg(any( target_os = "macos", target_os = "ios", target_os = "tvos", target_os = "freebsd", target_os = "netbsd", target_os = "openbsd", target_os = "dragonfly", target_os = "nto", ))] libc::SIGEMT => " (SIGEMT)", #[cfg(any( target_os = "macos", target_os = "ios", target_os = "tvos", target_os = "freebsd", target_os = "netbsd", target_os = "openbsd", target_os = "dragonfly" ))] libc::SIGINFO => " (SIGINFO)", _ => "", } } impl fmt::Display for ExitStatus { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { if let Some(code) = self.code() { write!(f, "exit status: {code}") } else if let Some(signal) = self.signal() { let signal_string = signal_string(signal); if self.core_dumped() { write!(f, "signal: {signal}{signal_string} (core dumped)") } else { write!(f, "signal: {signal}{signal_string}") } } else if let Some(signal) = self.stopped_signal() { let signal_string = signal_string(signal); write!(f, "stopped (not terminated) by signal: {signal}{signal_string}") } else if self.continued() { write!(f, "continued (WIFCONTINUED)") } else { write!(f, "unrecognised wait status: {} {:#x}", self.0, self.0) } } } #[derive(PartialEq, Eq, Clone, Copy)] pub struct ExitStatusError(NonZero_c_int); impl Into for ExitStatusError { fn into(self) -> ExitStatus { ExitStatus(self.0.into()) } } impl fmt::Debug for ExitStatusError { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_tuple("unix_wait_status").field(&self.0).finish() } } impl ExitStatusError { pub fn code(self) -> Option { ExitStatus(self.0.into()).code().map(|st| st.try_into().unwrap()) } } #[cfg(target_os = "linux")] #[unstable(feature = "linux_pidfd", issue = "82971")] impl crate::os::linux::process::ChildExt for crate::process::Child { fn pidfd(&self) -> io::Result<&PidFd> { self.handle .pidfd .as_ref() .ok_or_else(|| Error::new(ErrorKind::Uncategorized, "No pidfd was created.")) } fn take_pidfd(&mut self) -> io::Result { self.handle .pidfd .take() .ok_or_else(|| Error::new(ErrorKind::Uncategorized, "No pidfd was created.")) } } #[cfg(test)] #[path = "process_unix/tests.rs"] mod tests;