// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use std::collections::VecDeque; use std::fmt::Debug; use std::collections::vec_deque::{Drain}; use std::collections::CollectionAllocErr::*; use std::mem::size_of; use std::{usize, isize}; use self::Taggy::*; use self::Taggypar::*; #[test] fn test_simple() { let mut d = VecDeque::new(); assert_eq!(d.len(), 0); d.push_front(17); d.push_front(42); d.push_back(137); assert_eq!(d.len(), 3); d.push_back(137); assert_eq!(d.len(), 4); assert_eq!(*d.front().unwrap(), 42); assert_eq!(*d.back().unwrap(), 137); let mut i = d.pop_front(); assert_eq!(i, Some(42)); i = d.pop_back(); assert_eq!(i, Some(137)); i = d.pop_back(); assert_eq!(i, Some(137)); i = d.pop_back(); assert_eq!(i, Some(17)); assert_eq!(d.len(), 0); d.push_back(3); assert_eq!(d.len(), 1); d.push_front(2); assert_eq!(d.len(), 2); d.push_back(4); assert_eq!(d.len(), 3); d.push_front(1); assert_eq!(d.len(), 4); assert_eq!(d[0], 1); assert_eq!(d[1], 2); assert_eq!(d[2], 3); assert_eq!(d[3], 4); } #[cfg(test)] fn test_parameterized(a: T, b: T, c: T, d: T) { let mut deq = VecDeque::new(); assert_eq!(deq.len(), 0); deq.push_front(a.clone()); deq.push_front(b.clone()); deq.push_back(c.clone()); assert_eq!(deq.len(), 3); deq.push_back(d.clone()); assert_eq!(deq.len(), 4); assert_eq!((*deq.front().unwrap()).clone(), b.clone()); assert_eq!((*deq.back().unwrap()).clone(), d.clone()); assert_eq!(deq.pop_front().unwrap(), b.clone()); assert_eq!(deq.pop_back().unwrap(), d.clone()); assert_eq!(deq.pop_back().unwrap(), c.clone()); assert_eq!(deq.pop_back().unwrap(), a.clone()); assert_eq!(deq.len(), 0); deq.push_back(c.clone()); assert_eq!(deq.len(), 1); deq.push_front(b.clone()); assert_eq!(deq.len(), 2); deq.push_back(d.clone()); assert_eq!(deq.len(), 3); deq.push_front(a.clone()); assert_eq!(deq.len(), 4); assert_eq!(deq[0].clone(), a.clone()); assert_eq!(deq[1].clone(), b.clone()); assert_eq!(deq[2].clone(), c.clone()); assert_eq!(deq[3].clone(), d.clone()); } #[test] fn test_push_front_grow() { let mut deq = VecDeque::new(); for i in 0..66 { deq.push_front(i); } assert_eq!(deq.len(), 66); for i in 0..66 { assert_eq!(deq[i], 65 - i); } let mut deq = VecDeque::new(); for i in 0..66 { deq.push_back(i); } for i in 0..66 { assert_eq!(deq[i], i); } } #[test] fn test_index() { let mut deq = VecDeque::new(); for i in 1..4 { deq.push_front(i); } assert_eq!(deq[1], 2); } #[test] #[should_panic] fn test_index_out_of_bounds() { let mut deq = VecDeque::new(); for i in 1..4 { deq.push_front(i); } deq[3]; } #[derive(Clone, PartialEq, Debug)] enum Taggy { One(i32), Two(i32, i32), Three(i32, i32, i32), } #[derive(Clone, PartialEq, Debug)] enum Taggypar { Onepar(T), Twopar(T, T), Threepar(T, T, T), } #[derive(Clone, PartialEq, Debug)] struct RecCy { x: i32, y: i32, t: Taggy, } #[test] fn test_param_int() { test_parameterized::(5, 72, 64, 175); } #[test] fn test_param_taggy() { test_parameterized::(One(1), Two(1, 2), Three(1, 2, 3), Two(17, 42)); } #[test] fn test_param_taggypar() { test_parameterized::>(Onepar::(1), Twopar::(1, 2), Threepar::(1, 2, 3), Twopar::(17, 42)); } #[test] fn test_param_reccy() { let reccy1 = RecCy { x: 1, y: 2, t: One(1), }; let reccy2 = RecCy { x: 345, y: 2, t: Two(1, 2), }; let reccy3 = RecCy { x: 1, y: 777, t: Three(1, 2, 3), }; let reccy4 = RecCy { x: 19, y: 252, t: Two(17, 42), }; test_parameterized::(reccy1, reccy2, reccy3, reccy4); } #[test] fn test_with_capacity() { let mut d = VecDeque::with_capacity(0); d.push_back(1); assert_eq!(d.len(), 1); let mut d = VecDeque::with_capacity(50); d.push_back(1); assert_eq!(d.len(), 1); } #[test] fn test_with_capacity_non_power_two() { let mut d3 = VecDeque::with_capacity(3); d3.push_back(1); // X = None, | = lo // [|1, X, X] assert_eq!(d3.pop_front(), Some(1)); // [X, |X, X] assert_eq!(d3.front(), None); // [X, |3, X] d3.push_back(3); // [X, |3, 6] d3.push_back(6); // [X, X, |6] assert_eq!(d3.pop_front(), Some(3)); // Pushing the lo past half way point to trigger // the 'B' scenario for growth // [9, X, |6] d3.push_back(9); // [9, 12, |6] d3.push_back(12); d3.push_back(15); // There used to be a bug here about how the // VecDeque made growth assumptions about the // underlying Vec which didn't hold and lead // to corruption. // (Vec grows to next power of two) // good- [9, 12, 15, X, X, X, X, |6] // bug- [15, 12, X, X, X, |6, X, X] assert_eq!(d3.pop_front(), Some(6)); // Which leads us to the following state which // would be a failure case. // bug- [15, 12, X, X, X, X, |X, X] assert_eq!(d3.front(), Some(&9)); } #[test] fn test_reserve_exact() { let mut d = VecDeque::new(); d.push_back(0); d.reserve_exact(50); assert!(d.capacity() >= 51); } #[test] fn test_reserve() { let mut d = VecDeque::new(); d.push_back(0); d.reserve(50); assert!(d.capacity() >= 51); } #[test] fn test_swap() { let mut d: VecDeque<_> = (0..5).collect(); d.pop_front(); d.swap(0, 3); assert_eq!(d.iter().cloned().collect::>(), [4, 2, 3, 1]); } #[test] fn test_iter() { let mut d = VecDeque::new(); assert_eq!(d.iter().next(), None); assert_eq!(d.iter().size_hint(), (0, Some(0))); for i in 0..5 { d.push_back(i); } { let b: &[_] = &[&0, &1, &2, &3, &4]; assert_eq!(d.iter().collect::>(), b); } for i in 6..9 { d.push_front(i); } { let b: &[_] = &[&8, &7, &6, &0, &1, &2, &3, &4]; assert_eq!(d.iter().collect::>(), b); } let mut it = d.iter(); let mut len = d.len(); loop { match it.next() { None => break, _ => { len -= 1; assert_eq!(it.size_hint(), (len, Some(len))) } } } } #[test] fn test_rev_iter() { let mut d = VecDeque::new(); assert_eq!(d.iter().rev().next(), None); for i in 0..5 { d.push_back(i); } { let b: &[_] = &[&4, &3, &2, &1, &0]; assert_eq!(d.iter().rev().collect::>(), b); } for i in 6..9 { d.push_front(i); } let b: &[_] = &[&4, &3, &2, &1, &0, &6, &7, &8]; assert_eq!(d.iter().rev().collect::>(), b); } #[test] fn test_mut_rev_iter_wrap() { let mut d = VecDeque::with_capacity(3); assert!(d.iter_mut().rev().next().is_none()); d.push_back(1); d.push_back(2); d.push_back(3); assert_eq!(d.pop_front(), Some(1)); d.push_back(4); assert_eq!(d.iter_mut().rev().map(|x| *x).collect::>(), vec![4, 3, 2]); } #[test] fn test_mut_iter() { let mut d = VecDeque::new(); assert!(d.iter_mut().next().is_none()); for i in 0..3 { d.push_front(i); } for (i, elt) in d.iter_mut().enumerate() { assert_eq!(*elt, 2 - i); *elt = i; } { let mut it = d.iter_mut(); assert_eq!(*it.next().unwrap(), 0); assert_eq!(*it.next().unwrap(), 1); assert_eq!(*it.next().unwrap(), 2); assert!(it.next().is_none()); } } #[test] fn test_mut_rev_iter() { let mut d = VecDeque::new(); assert!(d.iter_mut().rev().next().is_none()); for i in 0..3 { d.push_front(i); } for (i, elt) in d.iter_mut().rev().enumerate() { assert_eq!(*elt, i); *elt = i; } { let mut it = d.iter_mut().rev(); assert_eq!(*it.next().unwrap(), 0); assert_eq!(*it.next().unwrap(), 1); assert_eq!(*it.next().unwrap(), 2); assert!(it.next().is_none()); } } #[test] fn test_into_iter() { // Empty iter { let d: VecDeque = VecDeque::new(); let mut iter = d.into_iter(); assert_eq!(iter.size_hint(), (0, Some(0))); assert_eq!(iter.next(), None); assert_eq!(iter.size_hint(), (0, Some(0))); } // simple iter { let mut d = VecDeque::new(); for i in 0..5 { d.push_back(i); } let b = vec![0, 1, 2, 3, 4]; assert_eq!(d.into_iter().collect::>(), b); } // wrapped iter { let mut d = VecDeque::new(); for i in 0..5 { d.push_back(i); } for i in 6..9 { d.push_front(i); } let b = vec![8, 7, 6, 0, 1, 2, 3, 4]; assert_eq!(d.into_iter().collect::>(), b); } // partially used { let mut d = VecDeque::new(); for i in 0..5 { d.push_back(i); } for i in 6..9 { d.push_front(i); } let mut it = d.into_iter(); assert_eq!(it.size_hint(), (8, Some(8))); assert_eq!(it.next(), Some(8)); assert_eq!(it.size_hint(), (7, Some(7))); assert_eq!(it.next_back(), Some(4)); assert_eq!(it.size_hint(), (6, Some(6))); assert_eq!(it.next(), Some(7)); assert_eq!(it.size_hint(), (5, Some(5))); } } #[test] fn test_drain() { // Empty iter { let mut d: VecDeque = VecDeque::new(); { let mut iter = d.drain(..); assert_eq!(iter.size_hint(), (0, Some(0))); assert_eq!(iter.next(), None); assert_eq!(iter.size_hint(), (0, Some(0))); } assert!(d.is_empty()); } // simple iter { let mut d = VecDeque::new(); for i in 0..5 { d.push_back(i); } assert_eq!(d.drain(..).collect::>(), [0, 1, 2, 3, 4]); assert!(d.is_empty()); } // wrapped iter { let mut d = VecDeque::new(); for i in 0..5 { d.push_back(i); } for i in 6..9 { d.push_front(i); } assert_eq!(d.drain(..).collect::>(), [8, 7, 6, 0, 1, 2, 3, 4]); assert!(d.is_empty()); } // partially used { let mut d: VecDeque<_> = VecDeque::new(); for i in 0..5 { d.push_back(i); } for i in 6..9 { d.push_front(i); } { let mut it = d.drain(..); assert_eq!(it.size_hint(), (8, Some(8))); assert_eq!(it.next(), Some(8)); assert_eq!(it.size_hint(), (7, Some(7))); assert_eq!(it.next_back(), Some(4)); assert_eq!(it.size_hint(), (6, Some(6))); assert_eq!(it.next(), Some(7)); assert_eq!(it.size_hint(), (5, Some(5))); } assert!(d.is_empty()); } } #[test] fn test_from_iter() { let v = vec![1, 2, 3, 4, 5, 6, 7]; let deq: VecDeque<_> = v.iter().cloned().collect(); let u: Vec<_> = deq.iter().cloned().collect(); assert_eq!(u, v); let seq = (0..).step_by(2).take(256); let deq: VecDeque<_> = seq.collect(); for (i, &x) in deq.iter().enumerate() { assert_eq!(2 * i, x); } assert_eq!(deq.len(), 256); } #[test] fn test_clone() { let mut d = VecDeque::new(); d.push_front(17); d.push_front(42); d.push_back(137); d.push_back(137); assert_eq!(d.len(), 4); let mut e = d.clone(); assert_eq!(e.len(), 4); while !d.is_empty() { assert_eq!(d.pop_back(), e.pop_back()); } assert_eq!(d.len(), 0); assert_eq!(e.len(), 0); } #[test] fn test_eq() { let mut d = VecDeque::new(); assert!(d == VecDeque::with_capacity(0)); d.push_front(137); d.push_front(17); d.push_front(42); d.push_back(137); let mut e = VecDeque::with_capacity(0); e.push_back(42); e.push_back(17); e.push_back(137); e.push_back(137); assert!(&e == &d); e.pop_back(); e.push_back(0); assert!(e != d); e.clear(); assert!(e == VecDeque::new()); } #[test] fn test_partial_eq_array() { let d = VecDeque::::new(); assert!(d == []); let mut d = VecDeque::new(); d.push_front('a'); assert!(d == ['a']); let mut d = VecDeque::new(); d.push_back('a'); assert!(d == ['a']); let mut d = VecDeque::new(); d.push_back('a'); d.push_back('b'); assert!(d == ['a', 'b']); } #[test] fn test_hash() { let mut x = VecDeque::new(); let mut y = VecDeque::new(); x.push_back(1); x.push_back(2); x.push_back(3); y.push_back(0); y.push_back(1); y.pop_front(); y.push_back(2); y.push_back(3); assert!(::hash(&x) == ::hash(&y)); } #[test] fn test_hash_after_rotation() { // test that two deques hash equal even if elements are laid out differently let len = 28; let mut ring: VecDeque = (0..len as i32).collect(); let orig = ring.clone(); for _ in 0..ring.capacity() { // shift values 1 step to the right by pop, sub one, push ring.pop_front(); for elt in &mut ring { *elt -= 1; } ring.push_back(len - 1); assert_eq!(::hash(&orig), ::hash(&ring)); assert_eq!(orig, ring); assert_eq!(ring, orig); } } #[test] fn test_eq_after_rotation() { // test that two deques are equal even if elements are laid out differently let len = 28; let mut ring: VecDeque = (0..len as i32).collect(); let mut shifted = ring.clone(); for _ in 0..10 { // shift values 1 step to the right by pop, sub one, push ring.pop_front(); for elt in &mut ring { *elt -= 1; } ring.push_back(len - 1); } // try every shift for _ in 0..shifted.capacity() { shifted.pop_front(); for elt in &mut shifted { *elt -= 1; } shifted.push_back(len - 1); assert_eq!(shifted, ring); assert_eq!(ring, shifted); } } #[test] fn test_ord() { let x = VecDeque::new(); let mut y = VecDeque::new(); y.push_back(1); y.push_back(2); y.push_back(3); assert!(x < y); assert!(y > x); assert!(x <= x); assert!(x >= x); } #[test] fn test_show() { let ringbuf: VecDeque<_> = (0..10).collect(); assert_eq!(format!("{:?}", ringbuf), "[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]"); let ringbuf: VecDeque<_> = vec!["just", "one", "test", "more"] .iter() .cloned() .collect(); assert_eq!(format!("{:?}", ringbuf), "[\"just\", \"one\", \"test\", \"more\"]"); } #[test] fn test_drop() { static mut DROPS: i32 = 0; struct Elem; impl Drop for Elem { fn drop(&mut self) { unsafe { DROPS += 1; } } } let mut ring = VecDeque::new(); ring.push_back(Elem); ring.push_front(Elem); ring.push_back(Elem); ring.push_front(Elem); drop(ring); assert_eq!(unsafe { DROPS }, 4); } #[test] fn test_drop_with_pop() { static mut DROPS: i32 = 0; struct Elem; impl Drop for Elem { fn drop(&mut self) { unsafe { DROPS += 1; } } } let mut ring = VecDeque::new(); ring.push_back(Elem); ring.push_front(Elem); ring.push_back(Elem); ring.push_front(Elem); drop(ring.pop_back()); drop(ring.pop_front()); assert_eq!(unsafe { DROPS }, 2); drop(ring); assert_eq!(unsafe { DROPS }, 4); } #[test] fn test_drop_clear() { static mut DROPS: i32 = 0; struct Elem; impl Drop for Elem { fn drop(&mut self) { unsafe { DROPS += 1; } } } let mut ring = VecDeque::new(); ring.push_back(Elem); ring.push_front(Elem); ring.push_back(Elem); ring.push_front(Elem); ring.clear(); assert_eq!(unsafe { DROPS }, 4); drop(ring); assert_eq!(unsafe { DROPS }, 4); } #[test] fn test_reserve_grow() { // test growth path A // [T o o H] -> [T o o H . . . . ] let mut ring = VecDeque::with_capacity(4); for i in 0..3 { ring.push_back(i); } ring.reserve(7); for i in 0..3 { assert_eq!(ring.pop_front(), Some(i)); } // test growth path B // [H T o o] -> [. T o o H . . . ] let mut ring = VecDeque::with_capacity(4); for i in 0..1 { ring.push_back(i); assert_eq!(ring.pop_front(), Some(i)); } for i in 0..3 { ring.push_back(i); } ring.reserve(7); for i in 0..3 { assert_eq!(ring.pop_front(), Some(i)); } // test growth path C // [o o H T] -> [o o H . . . . T ] let mut ring = VecDeque::with_capacity(4); for i in 0..3 { ring.push_back(i); assert_eq!(ring.pop_front(), Some(i)); } for i in 0..3 { ring.push_back(i); } ring.reserve(7); for i in 0..3 { assert_eq!(ring.pop_front(), Some(i)); } } #[test] fn test_get() { let mut ring = VecDeque::new(); ring.push_back(0); assert_eq!(ring.get(0), Some(&0)); assert_eq!(ring.get(1), None); ring.push_back(1); assert_eq!(ring.get(0), Some(&0)); assert_eq!(ring.get(1), Some(&1)); assert_eq!(ring.get(2), None); ring.push_back(2); assert_eq!(ring.get(0), Some(&0)); assert_eq!(ring.get(1), Some(&1)); assert_eq!(ring.get(2), Some(&2)); assert_eq!(ring.get(3), None); assert_eq!(ring.pop_front(), Some(0)); assert_eq!(ring.get(0), Some(&1)); assert_eq!(ring.get(1), Some(&2)); assert_eq!(ring.get(2), None); assert_eq!(ring.pop_front(), Some(1)); assert_eq!(ring.get(0), Some(&2)); assert_eq!(ring.get(1), None); assert_eq!(ring.pop_front(), Some(2)); assert_eq!(ring.get(0), None); assert_eq!(ring.get(1), None); } #[test] fn test_get_mut() { let mut ring = VecDeque::new(); for i in 0..3 { ring.push_back(i); } match ring.get_mut(1) { Some(x) => *x = -1, None => (), }; assert_eq!(ring.get_mut(0), Some(&mut 0)); assert_eq!(ring.get_mut(1), Some(&mut -1)); assert_eq!(ring.get_mut(2), Some(&mut 2)); assert_eq!(ring.get_mut(3), None); assert_eq!(ring.pop_front(), Some(0)); assert_eq!(ring.get_mut(0), Some(&mut -1)); assert_eq!(ring.get_mut(1), Some(&mut 2)); assert_eq!(ring.get_mut(2), None); } #[test] fn test_front() { let mut ring = VecDeque::new(); ring.push_back(10); ring.push_back(20); assert_eq!(ring.front(), Some(&10)); ring.pop_front(); assert_eq!(ring.front(), Some(&20)); ring.pop_front(); assert_eq!(ring.front(), None); } #[test] fn test_as_slices() { let mut ring: VecDeque = VecDeque::with_capacity(127); let cap = ring.capacity() as i32; let first = cap / 2; let last = cap - first; for i in 0..first { ring.push_back(i); let (left, right) = ring.as_slices(); let expected: Vec<_> = (0..i + 1).collect(); assert_eq!(left, &expected[..]); assert_eq!(right, []); } for j in -last..0 { ring.push_front(j); let (left, right) = ring.as_slices(); let expected_left: Vec<_> = (-last..j + 1).rev().collect(); let expected_right: Vec<_> = (0..first).collect(); assert_eq!(left, &expected_left[..]); assert_eq!(right, &expected_right[..]); } assert_eq!(ring.len() as i32, cap); assert_eq!(ring.capacity() as i32, cap); } #[test] fn test_as_mut_slices() { let mut ring: VecDeque = VecDeque::with_capacity(127); let cap = ring.capacity() as i32; let first = cap / 2; let last = cap - first; for i in 0..first { ring.push_back(i); let (left, right) = ring.as_mut_slices(); let expected: Vec<_> = (0..i + 1).collect(); assert_eq!(left, &expected[..]); assert_eq!(right, []); } for j in -last..0 { ring.push_front(j); let (left, right) = ring.as_mut_slices(); let expected_left: Vec<_> = (-last..j + 1).rev().collect(); let expected_right: Vec<_> = (0..first).collect(); assert_eq!(left, &expected_left[..]); assert_eq!(right, &expected_right[..]); } assert_eq!(ring.len() as i32, cap); assert_eq!(ring.capacity() as i32, cap); } #[test] fn test_append() { let mut a: VecDeque<_> = vec![1, 2, 3].into_iter().collect(); let mut b: VecDeque<_> = vec![4, 5, 6].into_iter().collect(); // normal append a.append(&mut b); assert_eq!(a.iter().cloned().collect::>(), [1, 2, 3, 4, 5, 6]); assert_eq!(b.iter().cloned().collect::>(), []); // append nothing to something a.append(&mut b); assert_eq!(a.iter().cloned().collect::>(), [1, 2, 3, 4, 5, 6]); assert_eq!(b.iter().cloned().collect::>(), []); // append something to nothing b.append(&mut a); assert_eq!(b.iter().cloned().collect::>(), [1, 2, 3, 4, 5, 6]); assert_eq!(a.iter().cloned().collect::>(), []); } #[test] fn test_retain() { let mut buf = VecDeque::new(); buf.extend(1..5); buf.retain(|&x| x % 2 == 0); let v: Vec<_> = buf.into_iter().collect(); assert_eq!(&v[..], &[2, 4]); } #[test] fn test_extend_ref() { let mut v = VecDeque::new(); v.push_back(1); v.extend(&[2, 3, 4]); assert_eq!(v.len(), 4); assert_eq!(v[0], 1); assert_eq!(v[1], 2); assert_eq!(v[2], 3); assert_eq!(v[3], 4); let mut w = VecDeque::new(); w.push_back(5); w.push_back(6); v.extend(&w); assert_eq!(v.len(), 6); assert_eq!(v[0], 1); assert_eq!(v[1], 2); assert_eq!(v[2], 3); assert_eq!(v[3], 4); assert_eq!(v[4], 5); assert_eq!(v[5], 6); } #[test] fn test_contains() { let mut v = VecDeque::new(); v.extend(&[2, 3, 4]); assert!(v.contains(&3)); assert!(!v.contains(&1)); v.clear(); assert!(!v.contains(&3)); } #[allow(dead_code)] fn assert_covariance() { fn drain<'new>(d: Drain<'static, &'static str>) -> Drain<'new, &'new str> { d } } #[test] fn test_is_empty() { let mut v = VecDeque::::new(); assert!(v.is_empty()); assert!(v.iter().is_empty()); assert!(v.iter_mut().is_empty()); v.extend(&[2, 3, 4]); assert!(!v.is_empty()); assert!(!v.iter().is_empty()); assert!(!v.iter_mut().is_empty()); while let Some(_) = v.pop_front() { assert_eq!(v.is_empty(), v.len() == 0); assert_eq!(v.iter().is_empty(), v.iter().len() == 0); assert_eq!(v.iter_mut().is_empty(), v.iter_mut().len() == 0); } assert!(v.is_empty()); assert!(v.iter().is_empty()); assert!(v.iter_mut().is_empty()); assert!(v.into_iter().is_empty()); } #[test] fn test_reserve_exact_2() { // This is all the same as test_reserve let mut v = VecDeque::new(); v.reserve_exact(2); assert!(v.capacity() >= 2); for i in 0..16 { v.push_back(i); } assert!(v.capacity() >= 16); v.reserve_exact(16); assert!(v.capacity() >= 32); v.push_back(16); v.reserve_exact(16); assert!(v.capacity() >= 48) } #[test] fn test_try_reserve() { // These are the interesting cases: // * exactly isize::MAX should never trigger a CapacityOverflow (can be OOM) // * > isize::MAX should always fail // * On 16/32-bit should CapacityOverflow // * On 64-bit should OOM // * overflow may trigger when adding `len` to `cap` (in number of elements) // * overflow may trigger when multiplying `new_cap` by size_of:: (to get bytes) const MAX_CAP: usize = (isize::MAX as usize + 1) / 2 - 1; const MAX_USIZE: usize = usize::MAX; // On 16/32-bit, we check that allocations don't exceed isize::MAX, // on 64-bit, we assume the OS will give an OOM for such a ridiculous size. // Any platform that succeeds for these requests is technically broken with // ptr::offset because LLVM is the worst. let guards_against_isize = size_of::() < 8; { // Note: basic stuff is checked by test_reserve let mut empty_bytes: VecDeque = VecDeque::new(); // Check isize::MAX doesn't count as an overflow if let Err(CapacityOverflow) = empty_bytes.try_reserve(MAX_CAP) { panic!("isize::MAX shouldn't trigger an overflow!"); } // Play it again, frank! (just to be sure) if let Err(CapacityOverflow) = empty_bytes.try_reserve(MAX_CAP) { panic!("isize::MAX shouldn't trigger an overflow!"); } if guards_against_isize { // Check isize::MAX + 1 does count as overflow if let Err(CapacityOverflow) = empty_bytes.try_reserve(MAX_CAP + 1) { } else { panic!("isize::MAX + 1 should trigger an overflow!") } // Check usize::MAX does count as overflow if let Err(CapacityOverflow) = empty_bytes.try_reserve(MAX_USIZE) { } else { panic!("usize::MAX should trigger an overflow!") } } else { // Check isize::MAX is an OOM // VecDeque starts with capacity 7, always adds 1 to the capacity // and also rounds the number to next power of 2 so this is the // furthest we can go without triggering CapacityOverflow if let Err(AllocErr) = empty_bytes.try_reserve(MAX_CAP) { } else { panic!("isize::MAX + 1 should trigger an OOM!") } } } { // Same basic idea, but with non-zero len let mut ten_bytes: VecDeque = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10].into_iter().collect(); if let Err(CapacityOverflow) = ten_bytes.try_reserve(MAX_CAP - 10) { panic!("isize::MAX shouldn't trigger an overflow!"); } if let Err(CapacityOverflow) = ten_bytes.try_reserve(MAX_CAP - 10) { panic!("isize::MAX shouldn't trigger an overflow!"); } if guards_against_isize { if let Err(CapacityOverflow) = ten_bytes.try_reserve(MAX_CAP - 9) { } else { panic!("isize::MAX + 1 should trigger an overflow!"); } } else { if let Err(AllocErr) = ten_bytes.try_reserve(MAX_CAP - 9) { } else { panic!("isize::MAX + 1 should trigger an OOM!") } } // Should always overflow in the add-to-len if let Err(CapacityOverflow) = ten_bytes.try_reserve(MAX_USIZE) { } else { panic!("usize::MAX should trigger an overflow!") } } { // Same basic idea, but with interesting type size let mut ten_u32s: VecDeque = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10].into_iter().collect(); if let Err(CapacityOverflow) = ten_u32s.try_reserve(MAX_CAP/4 - 10) { panic!("isize::MAX shouldn't trigger an overflow!"); } if let Err(CapacityOverflow) = ten_u32s.try_reserve(MAX_CAP/4 - 10) { panic!("isize::MAX shouldn't trigger an overflow!"); } if guards_against_isize { if let Err(CapacityOverflow) = ten_u32s.try_reserve(MAX_CAP/4 - 9) { } else { panic!("isize::MAX + 1 should trigger an overflow!"); } } else { if let Err(AllocErr) = ten_u32s.try_reserve(MAX_CAP/4 - 9) { } else { panic!("isize::MAX + 1 should trigger an OOM!") } } // Should fail in the mul-by-size if let Err(CapacityOverflow) = ten_u32s.try_reserve(MAX_USIZE - 20) { } else { panic!("usize::MAX should trigger an overflow!"); } } } #[test] fn test_try_reserve_exact() { // This is exactly the same as test_try_reserve with the method changed. // See that test for comments. const MAX_CAP: usize = (isize::MAX as usize + 1) / 2 - 1; const MAX_USIZE: usize = usize::MAX; let guards_against_isize = size_of::() < 8; { let mut empty_bytes: VecDeque = VecDeque::new(); if let Err(CapacityOverflow) = empty_bytes.try_reserve_exact(MAX_CAP) { panic!("isize::MAX shouldn't trigger an overflow!"); } if let Err(CapacityOverflow) = empty_bytes.try_reserve_exact(MAX_CAP) { panic!("isize::MAX shouldn't trigger an overflow!"); } if guards_against_isize { if let Err(CapacityOverflow) = empty_bytes.try_reserve_exact(MAX_CAP + 1) { } else { panic!("isize::MAX + 1 should trigger an overflow!") } if let Err(CapacityOverflow) = empty_bytes.try_reserve_exact(MAX_USIZE) { } else { panic!("usize::MAX should trigger an overflow!") } } else { // Check isize::MAX is an OOM // VecDeque starts with capacity 7, always adds 1 to the capacity // and also rounds the number to next power of 2 so this is the // furthest we can go without triggering CapacityOverflow if let Err(AllocErr) = empty_bytes.try_reserve_exact(MAX_CAP) { } else { panic!("isize::MAX + 1 should trigger an OOM!") } } } { let mut ten_bytes: VecDeque = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10].into_iter().collect(); if let Err(CapacityOverflow) = ten_bytes.try_reserve_exact(MAX_CAP - 10) { panic!("isize::MAX shouldn't trigger an overflow!"); } if let Err(CapacityOverflow) = ten_bytes.try_reserve_exact(MAX_CAP - 10) { panic!("isize::MAX shouldn't trigger an overflow!"); } if guards_against_isize { if let Err(CapacityOverflow) = ten_bytes.try_reserve_exact(MAX_CAP - 9) { } else { panic!("isize::MAX + 1 should trigger an overflow!"); } } else { if let Err(AllocErr) = ten_bytes.try_reserve_exact(MAX_CAP - 9) { } else { panic!("isize::MAX + 1 should trigger an OOM!") } } if let Err(CapacityOverflow) = ten_bytes.try_reserve_exact(MAX_USIZE) { } else { panic!("usize::MAX should trigger an overflow!") } } { let mut ten_u32s: VecDeque = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10].into_iter().collect(); if let Err(CapacityOverflow) = ten_u32s.try_reserve_exact(MAX_CAP/4 - 10) { panic!("isize::MAX shouldn't trigger an overflow!"); } if let Err(CapacityOverflow) = ten_u32s.try_reserve_exact(MAX_CAP/4 - 10) { panic!("isize::MAX shouldn't trigger an overflow!"); } if guards_against_isize { if let Err(CapacityOverflow) = ten_u32s.try_reserve_exact(MAX_CAP/4 - 9) { } else { panic!("isize::MAX + 1 should trigger an overflow!"); } } else { if let Err(AllocErr) = ten_u32s.try_reserve_exact(MAX_CAP/4 - 9) { } else { panic!("isize::MAX + 1 should trigger an OOM!") } } if let Err(CapacityOverflow) = ten_u32s.try_reserve_exact(MAX_USIZE - 20) { } else { panic!("usize::MAX should trigger an overflow!") } } }