// implements the unary operator "op &T" // based on "op T" where T is expected to be `Copy`able macro_rules! forward_ref_unop { (impl $imp:ident, $method:ident for $t:ty) => { forward_ref_unop!(impl $imp, $method for $t, #[stable(feature = "rust1", since = "1.0.0")]); }; (impl $imp:ident, $method:ident for $t:ty, #[$attr:meta]) => { #[$attr] impl $imp for &$t { type Output = <$t as $imp>::Output; #[inline] fn $method(self) -> <$t as $imp>::Output { $imp::$method(*self) } } } } // implements binary operators "&T op U", "T op &U", "&T op &U" // based on "T op U" where T and U are expected to be `Copy`able macro_rules! forward_ref_binop { (impl $imp:ident, $method:ident for $t:ty, $u:ty) => { forward_ref_binop!(impl $imp, $method for $t, $u, #[stable(feature = "rust1", since = "1.0.0")]); }; (impl $imp:ident, $method:ident for $t:ty, $u:ty, #[$attr:meta]) => { #[$attr] impl<'a> $imp<$u> for &'a $t { type Output = <$t as $imp<$u>>::Output; #[inline] fn $method(self, other: $u) -> <$t as $imp<$u>>::Output { $imp::$method(*self, other) } } #[$attr] impl $imp<&$u> for $t { type Output = <$t as $imp<$u>>::Output; #[inline] fn $method(self, other: &$u) -> <$t as $imp<$u>>::Output { $imp::$method(self, *other) } } #[$attr] impl $imp<&$u> for &$t { type Output = <$t as $imp<$u>>::Output; #[inline] fn $method(self, other: &$u) -> <$t as $imp<$u>>::Output { $imp::$method(*self, *other) } } } } // implements "T op= &U", based on "T op= U" // where U is expected to be `Copy`able macro_rules! forward_ref_op_assign { (impl $imp:ident, $method:ident for $t:ty, $u:ty) => { forward_ref_op_assign!(impl $imp, $method for $t, $u, #[stable(feature = "op_assign_builtins_by_ref", since = "1.22.0")]); }; (impl $imp:ident, $method:ident for $t:ty, $u:ty, #[$attr:meta]) => { #[$attr] impl $imp<&$u> for $t { #[inline] fn $method(&mut self, other: &$u) { $imp::$method(self, *other); } } } } /// Create a zero-size type similar to a closure type, but named. #[unstable(feature = "std_internals", issue = "0")] macro_rules! impl_fn_for_zst { ($( $( #[$attr: meta] )* struct $Name: ident impl$( <$( $lifetime : lifetime ),+> )? Fn = |$( $arg: ident: $ArgTy: ty ),*| -> $ReturnTy: ty $body: block; )+) => { $( $( #[$attr] )* struct $Name; impl $( <$( $lifetime ),+> )? Fn<($( $ArgTy, )*)> for $Name { #[inline] extern "rust-call" fn call(&self, ($( $arg, )*): ($( $ArgTy, )*)) -> $ReturnTy { $body } } impl $( <$( $lifetime ),+> )? FnMut<($( $ArgTy, )*)> for $Name { #[inline] extern "rust-call" fn call_mut( &mut self, ($( $arg, )*): ($( $ArgTy, )*) ) -> $ReturnTy { Fn::call(&*self, ($( $arg, )*)) } } impl $( <$( $lifetime ),+> )? FnOnce<($( $ArgTy, )*)> for $Name { type Output = $ReturnTy; #[inline] extern "rust-call" fn call_once(self, ($( $arg, )*): ($( $ArgTy, )*)) -> $ReturnTy { Fn::call(&self, ($( $arg, )*)) } } )+ } } /// A macro for defining `#[cfg]` if-else statements. /// /// The macro provided by this crate, `cfg_if`, is similar to the `if/elif` C /// preprocessor macro by allowing definition of a cascade of `#[cfg]` cases, /// emitting the implementation which matches first. /// /// This allows you to conveniently provide a long list `#[cfg]`'d blocks of code /// without having to rewrite each clause multiple times. /// /// # Example /// /// ``` /// #[macro_use] /// extern crate cfg_if; /// /// cfg_if! { /// if #[cfg(unix)] { /// fn foo() { /* unix specific functionality */ } /// } else if #[cfg(target_pointer_width = "32")] { /// fn foo() { /* non-unix, 32-bit functionality */ } /// } else { /// fn foo() { /* fallback implementation */ } /// } /// } /// /// # fn main() {} /// ``` macro_rules! cfg_if { // match if/else chains with a final `else` ($( if #[cfg($($meta:meta),*)] { $($it:item)* } ) else * else { $($it2:item)* }) => { cfg_if! { @__items () ; $( ( ($($meta),*) ($($it)*) ), )* ( () ($($it2)*) ), } }; // match if/else chains lacking a final `else` ( if #[cfg($($i_met:meta),*)] { $($i_it:item)* } $( else if #[cfg($($e_met:meta),*)] { $($e_it:item)* } )* ) => { cfg_if! { @__items () ; ( ($($i_met),*) ($($i_it)*) ), $( ( ($($e_met),*) ($($e_it)*) ), )* ( () () ), } }; // Internal and recursive macro to emit all the items // // Collects all the negated cfgs in a list at the beginning and after the // semicolon is all the remaining items (@__items ($($not:meta,)*) ; ) => {}; (@__items ($($not:meta,)*) ; ( ($($m:meta),*) ($($it:item)*) ), $($rest:tt)*) => { // Emit all items within one block, applying an approprate #[cfg]. The // #[cfg] will require all `$m` matchers specified and must also negate // all previous matchers. cfg_if! { @__apply cfg(all($($m,)* not(any($($not),*)))), $($it)* } // Recurse to emit all other items in `$rest`, and when we do so add all // our `$m` matchers to the list of `$not` matchers as future emissions // will have to negate everything we just matched as well. cfg_if! { @__items ($($not,)* $($m,)*) ; $($rest)* } }; // Internal macro to Apply a cfg attribute to a list of items (@__apply $m:meta, $($it:item)*) => { $(#[$m] $it)* }; }