//! Validating and decomposing a decimal string of the form: //! //! `(digits | digits? '.'? digits?) (('e' | 'E') ('+' | '-')? digits)?` //! //! In other words, standard floating-point syntax, with two exceptions: No sign, and no //! handling of "inf" and "NaN". These are handled by the driver function (super::dec2flt). //! //! Although recognizing valid inputs is relatively easy, this module also has to reject the //! countless invalid variations, never panic, and perform numerous checks that the other //! modules rely on to not panic (or overflow) in turn. //! To make matters worse, all that happens in a single pass over the input. //! So, be careful when modifying anything, and double-check with the other modules. use super::num; use self::ParseResult::{Valid, ShortcutToInf, ShortcutToZero, Invalid}; #[derive(Debug)] pub enum Sign { Positive, Negative, } #[derive(Debug, PartialEq, Eq)] /// The interesting parts of a decimal string. pub struct Decimal<'a> { pub integral: &'a [u8], pub fractional: &'a [u8], /// The decimal exponent, guaranteed to have fewer than 18 decimal digits. pub exp: i64, } impl<'a> Decimal<'a> { pub fn new(integral: &'a [u8], fractional: &'a [u8], exp: i64) -> Decimal<'a> { Decimal { integral, fractional, exp } } } #[derive(Debug, PartialEq, Eq)] pub enum ParseResult<'a> { Valid(Decimal<'a>), ShortcutToInf, ShortcutToZero, Invalid, } /// Checks if the input string is a valid floating point number and if so, locate the integral /// part, the fractional part, and the exponent in it. Does not handle signs. pub fn parse_decimal(s: &str) -> ParseResult<'_> { if s.is_empty() { return Invalid; } let s = s.as_bytes(); let (integral, s) = eat_digits(s); match s.first() { None => Valid(Decimal::new(integral, b"", 0)), Some(&b'e') | Some(&b'E') => { if integral.is_empty() { return Invalid; // No digits before 'e' } parse_exp(integral, b"", &s[1..]) } Some(&b'.') => { let (fractional, s) = eat_digits(&s[1..]); if integral.is_empty() && fractional.is_empty() { // We require at least a single digit before or after the point. return Invalid; } match s.first() { None => Valid(Decimal::new(integral, fractional, 0)), Some(&b'e') | Some(&b'E') => parse_exp(integral, fractional, &s[1..]), _ => Invalid, // Trailing junk after fractional part } } _ => Invalid, // Trailing junk after first digit string } } /// Carves off decimal digits up to the first non-digit character. fn eat_digits(s: &[u8]) -> (&[u8], &[u8]) { let mut i = 0; while i < s.len() && b'0' <= s[i] && s[i] <= b'9' { i += 1; } (&s[..i], &s[i..]) } /// Exponent extraction and error checking. fn parse_exp<'a>(integral: &'a [u8], fractional: &'a [u8], rest: &'a [u8]) -> ParseResult<'a> { let (sign, rest) = match rest.first() { Some(&b'-') => (Sign::Negative, &rest[1..]), Some(&b'+') => (Sign::Positive, &rest[1..]), _ => (Sign::Positive, rest), }; let (mut number, trailing) = eat_digits(rest); if !trailing.is_empty() { return Invalid; // Trailing junk after exponent } if number.is_empty() { return Invalid; // Empty exponent } // At this point, we certainly have a valid string of digits. It may be too long to put into // an `i64`, but if it's that huge, the input is certainly zero or infinity. Since each zero // in the decimal digits only adjusts the exponent by +/- 1, at exp = 10^18 the input would // have to be 17 exabyte (!) of zeros to get even remotely close to being finite. // This is not exactly a use case we need to cater to. while number.first() == Some(&b'0') { number = &number[1..]; } if number.len() >= 18 { return match sign { Sign::Positive => ShortcutToInf, Sign::Negative => ShortcutToZero, }; } let abs_exp = num::from_str_unchecked(number); let e = match sign { Sign::Positive => abs_exp as i64, Sign::Negative => -(abs_exp as i64), }; Valid(Decimal::new(integral, fractional, e)) }