//! Bit fiddling on positive IEEE 754 floats. Negative numbers aren't and needn't be handled. //! Normal floating point numbers have a canonical representation as (frac, exp) such that the //! value is 2exp * (1 + sum(frac[N-i] / 2i)) where N is the number of bits. //! Subnormals are slightly different and weird, but the same principle applies. //! //! Here, however, we represent them as (sig, k) with f positive, such that the value is f * //! 2e. Besides making the "hidden bit" explicit, this changes the exponent by the //! so-called mantissa shift. //! //! Put another way, normally floats are written as (1) but here they are written as (2): //! //! 1. `1.101100...11 * 2^m` //! 2. `1101100...11 * 2^n` //! //! We call (1) the **fractional representation** and (2) the **integral representation**. //! //! Many functions in this module only handle normal numbers. The dec2flt routines conservatively //! take the universally-correct slow path (Algorithm M) for very small and very large numbers. //! That algorithm needs only next_float() which does handle subnormals and zeros. use crate::cmp::Ordering::{Less, Equal, Greater}; use crate::convert::{TryFrom, TryInto}; use crate::ops::{Add, Mul, Div, Neg}; use crate::fmt::{Debug, LowerExp}; use crate::num::diy_float::Fp; use crate::num::FpCategory::{Infinite, Zero, Subnormal, Normal, Nan}; use crate::num::FpCategory; use crate::num::dec2flt::num::{self, Big}; use crate::num::dec2flt::table; #[derive(Copy, Clone, Debug)] pub struct Unpacked { pub sig: u64, pub k: i16, } impl Unpacked { pub fn new(sig: u64, k: i16) -> Self { Unpacked { sig, k } } } /// A helper trait to avoid duplicating basically all the conversion code for `f32` and `f64`. /// /// See the parent module's doc comment for why this is necessary. /// /// Should **never ever** be implemented for other types or be used outside the dec2flt module. pub trait RawFloat : Copy + Debug + LowerExp + Mul + Div + Neg { const INFINITY: Self; const NAN: Self; const ZERO: Self; /// Type used by `to_bits` and `from_bits`. type Bits: Add + From + TryFrom; /// Performs a raw transmutation to an integer. fn to_bits(self) -> Self::Bits; /// Performs a raw transmutation from an integer. fn from_bits(v: Self::Bits) -> Self; /// Returns the category that this number falls into. fn classify(self) -> FpCategory; /// Returns the mantissa, exponent and sign as integers. fn integer_decode(self) -> (u64, i16, i8); /// Decodes the float. fn unpack(self) -> Unpacked; /// Casts from a small integer that can be represented exactly. Panic if the integer can't be /// represented, the other code in this module makes sure to never let that happen. fn from_int(x: u64) -> Self; /// Gets the value 10e from a pre-computed table. /// Panics for `e >= CEIL_LOG5_OF_MAX_SIG`. fn short_fast_pow10(e: usize) -> Self; /// What the name says. It's easier to hard code than juggling intrinsics and /// hoping LLVM constant folds it. const CEIL_LOG5_OF_MAX_SIG: i16; // A conservative bound on the decimal digits of inputs that can't produce overflow or zero or /// subnormals. Probably the decimal exponent of the maximum normal value, hence the name. const MAX_NORMAL_DIGITS: usize; /// When the most significant decimal digit has a place value greater than this, the number /// is certainly rounded to infinity. const INF_CUTOFF: i64; /// When the most significant decimal digit has a place value less than this, the number /// is certainly rounded to zero. const ZERO_CUTOFF: i64; /// The number of bits in the exponent. const EXP_BITS: u8; /// The number of bits in the significand, *including* the hidden bit. const SIG_BITS: u8; /// The number of bits in the significand, *excluding* the hidden bit. const EXPLICIT_SIG_BITS: u8; /// The maximum legal exponent in fractional representation. const MAX_EXP: i16; /// The minimum legal exponent in fractional representation, excluding subnormals. const MIN_EXP: i16; /// `MAX_EXP` for integral representation, i.e., with the shift applied. const MAX_EXP_INT: i16; /// `MAX_EXP` encoded (i.e., with offset bias) const MAX_ENCODED_EXP: i16; /// `MIN_EXP` for integral representation, i.e., with the shift applied. const MIN_EXP_INT: i16; /// The maximum normalized significand in integral representation. const MAX_SIG: u64; /// The minimal normalized significand in integral representation. const MIN_SIG: u64; } // Mostly a workaround for #34344. macro_rules! other_constants { ($type: ident) => { const EXPLICIT_SIG_BITS: u8 = Self::SIG_BITS - 1; const MAX_EXP: i16 = (1 << (Self::EXP_BITS - 1)) - 1; const MIN_EXP: i16 = -Self::MAX_EXP + 1; const MAX_EXP_INT: i16 = Self::MAX_EXP - (Self::SIG_BITS as i16 - 1); const MAX_ENCODED_EXP: i16 = (1 << Self::EXP_BITS) - 1; const MIN_EXP_INT: i16 = Self::MIN_EXP - (Self::SIG_BITS as i16 - 1); const MAX_SIG: u64 = (1 << Self::SIG_BITS) - 1; const MIN_SIG: u64 = 1 << (Self::SIG_BITS - 1); const INFINITY: Self = $crate::$type::INFINITY; const NAN: Self = $crate::$type::NAN; const ZERO: Self = 0.0; } } impl RawFloat for f32 { type Bits = u32; const SIG_BITS: u8 = 24; const EXP_BITS: u8 = 8; const CEIL_LOG5_OF_MAX_SIG: i16 = 11; const MAX_NORMAL_DIGITS: usize = 35; const INF_CUTOFF: i64 = 40; const ZERO_CUTOFF: i64 = -48; other_constants!(f32); /// Returns the mantissa, exponent and sign as integers. fn integer_decode(self) -> (u64, i16, i8) { let bits = self.to_bits(); let sign: i8 = if bits >> 31 == 0 { 1 } else { -1 }; let mut exponent: i16 = ((bits >> 23) & 0xff) as i16; let mantissa = if exponent == 0 { (bits & 0x7fffff) << 1 } else { (bits & 0x7fffff) | 0x800000 }; // Exponent bias + mantissa shift exponent -= 127 + 23; (mantissa as u64, exponent, sign) } fn unpack(self) -> Unpacked { let (sig, exp, _sig) = self.integer_decode(); Unpacked::new(sig, exp) } fn from_int(x: u64) -> f32 { // rkruppe is uncertain whether `as` rounds correctly on all platforms. debug_assert!(x as f32 == fp_to_float(Fp { f: x, e: 0 })); x as f32 } fn short_fast_pow10(e: usize) -> Self { table::F32_SHORT_POWERS[e] } fn classify(self) -> FpCategory { self.classify() } fn to_bits(self) -> Self::Bits { self.to_bits() } fn from_bits(v: Self::Bits) -> Self { Self::from_bits(v) } } impl RawFloat for f64 { type Bits = u64; const SIG_BITS: u8 = 53; const EXP_BITS: u8 = 11; const CEIL_LOG5_OF_MAX_SIG: i16 = 23; const MAX_NORMAL_DIGITS: usize = 305; const INF_CUTOFF: i64 = 310; const ZERO_CUTOFF: i64 = -326; other_constants!(f64); /// Returns the mantissa, exponent and sign as integers. fn integer_decode(self) -> (u64, i16, i8) { let bits = self.to_bits(); let sign: i8 = if bits >> 63 == 0 { 1 } else { -1 }; let mut exponent: i16 = ((bits >> 52) & 0x7ff) as i16; let mantissa = if exponent == 0 { (bits & 0xfffffffffffff) << 1 } else { (bits & 0xfffffffffffff) | 0x10000000000000 }; // Exponent bias + mantissa shift exponent -= 1023 + 52; (mantissa, exponent, sign) } fn unpack(self) -> Unpacked { let (sig, exp, _sig) = self.integer_decode(); Unpacked::new(sig, exp) } fn from_int(x: u64) -> f64 { // rkruppe is uncertain whether `as` rounds correctly on all platforms. debug_assert!(x as f64 == fp_to_float(Fp { f: x, e: 0 })); x as f64 } fn short_fast_pow10(e: usize) -> Self { table::F64_SHORT_POWERS[e] } fn classify(self) -> FpCategory { self.classify() } fn to_bits(self) -> Self::Bits { self.to_bits() } fn from_bits(v: Self::Bits) -> Self { Self::from_bits(v) } } /// Converts an `Fp` to the closest machine float type. /// Does not handle subnormal results. pub fn fp_to_float(x: Fp) -> T { let x = x.normalize(); // x.f is 64 bit, so x.e has a mantissa shift of 63 let e = x.e + 63; if e > T::MAX_EXP { panic!("fp_to_float: exponent {} too large", e) } else if e > T::MIN_EXP { encode_normal(round_normal::(x)) } else { panic!("fp_to_float: exponent {} too small", e) } } /// Round the 64-bit significand to T::SIG_BITS bits with half-to-even. /// Does not handle exponent overflow. pub fn round_normal(x: Fp) -> Unpacked { let excess = 64 - T::SIG_BITS as i16; let half: u64 = 1 << (excess - 1); let (q, rem) = (x.f >> excess, x.f & ((1 << excess) - 1)); assert_eq!(q << excess | rem, x.f); // Adjust mantissa shift let k = x.e + excess; if rem < half { Unpacked::new(q, k) } else if rem == half && (q % 2) == 0 { Unpacked::new(q, k) } else if q == T::MAX_SIG { Unpacked::new(T::MIN_SIG, k + 1) } else { Unpacked::new(q + 1, k) } } /// Inverse of `RawFloat::unpack()` for normalized numbers. /// Panics if the significand or exponent are not valid for normalized numbers. pub fn encode_normal(x: Unpacked) -> T { debug_assert!(T::MIN_SIG <= x.sig && x.sig <= T::MAX_SIG, "encode_normal: significand not normalized"); // Remove the hidden bit let sig_enc = x.sig & !(1 << T::EXPLICIT_SIG_BITS); // Adjust the exponent for exponent bias and mantissa shift let k_enc = x.k + T::MAX_EXP + T::EXPLICIT_SIG_BITS as i16; debug_assert!(k_enc != 0 && k_enc < T::MAX_ENCODED_EXP, "encode_normal: exponent out of range"); // Leave sign bit at 0 ("+"), our numbers are all positive let bits = (k_enc as u64) << T::EXPLICIT_SIG_BITS | sig_enc; T::from_bits(bits.try_into().unwrap_or_else(|_| unreachable!())) } /// Construct a subnormal. A mantissa of 0 is allowed and constructs zero. pub fn encode_subnormal(significand: u64) -> T { assert!(significand < T::MIN_SIG, "encode_subnormal: not actually subnormal"); // Encoded exponent is 0, the sign bit is 0, so we just have to reinterpret the bits. T::from_bits(significand.try_into().unwrap_or_else(|_| unreachable!())) } /// Approximate a bignum with an Fp. Rounds within 0.5 ULP with half-to-even. pub fn big_to_fp(f: &Big) -> Fp { let end = f.bit_length(); assert!(end != 0, "big_to_fp: unexpectedly, input is zero"); let start = end.saturating_sub(64); let leading = num::get_bits(f, start, end); // We cut off all bits prior to the index `start`, i.e., we effectively right-shift by // an amount of `start`, so this is also the exponent we need. let e = start as i16; let rounded_down = Fp { f: leading, e }.normalize(); // Round (half-to-even) depending on the truncated bits. match num::compare_with_half_ulp(f, start) { Less => rounded_down, Equal if leading % 2 == 0 => rounded_down, Equal | Greater => match leading.checked_add(1) { Some(f) => Fp { f, e }.normalize(), None => Fp { f: 1 << 63, e: e + 1 }, } } } /// Finds the largest floating point number strictly smaller than the argument. /// Does not handle subnormals, zero, or exponent underflow. pub fn prev_float(x: T) -> T { match x.classify() { Infinite => panic!("prev_float: argument is infinite"), Nan => panic!("prev_float: argument is NaN"), Subnormal => panic!("prev_float: argument is subnormal"), Zero => panic!("prev_float: argument is zero"), Normal => { let Unpacked { sig, k } = x.unpack(); if sig == T::MIN_SIG { encode_normal(Unpacked::new(T::MAX_SIG, k - 1)) } else { encode_normal(Unpacked::new(sig - 1, k)) } } } } // Find the smallest floating point number strictly larger than the argument. // This operation is saturating, i.e., next_float(inf) == inf. // Unlike most code in this module, this function does handle zero, subnormals, and infinities. // However, like all other code here, it does not deal with NaN and negative numbers. pub fn next_float(x: T) -> T { match x.classify() { Nan => panic!("next_float: argument is NaN"), Infinite => T::INFINITY, // This seems too good to be true, but it works. // 0.0 is encoded as the all-zero word. Subnormals are 0x000m...m where m is the mantissa. // In particular, the smallest subnormal is 0x0...01 and the largest is 0x000F...F. // The smallest normal number is 0x0010...0, so this corner case works as well. // If the increment overflows the mantissa, the carry bit increments the exponent as we // want, and the mantissa bits become zero. Because of the hidden bit convention, this // too is exactly what we want! // Finally, f64::MAX + 1 = 7eff...f + 1 = 7ff0...0 = f64::INFINITY. Zero | Subnormal | Normal => { T::from_bits(x.to_bits() + T::Bits::from(1u8)) } } }