// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Operations and constants for `float` // Even though this module exports everything defined in it, // because it contains re-exports, we also have to explicitly // export locally defined things. That's a bit annoying. // export when m_float == c_double // PORT this must match in width according to architecture use libc::c_int; use num::{Zero, One, strconv}; use num::FPCategory; use prelude::*; pub use f64::{add, sub, mul, div, rem, lt, le, eq, ne, ge, gt}; pub use f64::{acos, asin, atan2, cbrt, ceil, copysign, cosh, floor}; pub use f64::{erf, erfc, exp, exp_m1, exp2, abs_sub}; pub use f64::{mul_add, fmax, fmin, next_after, frexp, hypot, ldexp}; pub use f64::{lgamma, ln, log_radix, ln_1p, log10, log2, ilog_radix}; pub use f64::{modf, pow, powi, round, sinh, tanh, tgamma, trunc}; pub use f64::{j0, j1, jn, y0, y1, yn}; pub static NaN: float = 0.0/0.0; pub static infinity: float = 1.0/0.0; pub static neg_infinity: float = -1.0/0.0; /* Module: consts */ pub mod consts { // FIXME (requires Issue #1433 to fix): replace with mathematical // staticants from cmath. /// Archimedes' staticant pub static pi: float = 3.14159265358979323846264338327950288; /// pi/2.0 pub static frac_pi_2: float = 1.57079632679489661923132169163975144; /// pi/4.0 pub static frac_pi_4: float = 0.785398163397448309615660845819875721; /// 1.0/pi pub static frac_1_pi: float = 0.318309886183790671537767526745028724; /// 2.0/pi pub static frac_2_pi: float = 0.636619772367581343075535053490057448; /// 2.0/sqrt(pi) pub static frac_2_sqrtpi: float = 1.12837916709551257389615890312154517; /// sqrt(2.0) pub static sqrt2: float = 1.41421356237309504880168872420969808; /// 1.0/sqrt(2.0) pub static frac_1_sqrt2: float = 0.707106781186547524400844362104849039; /// Euler's number pub static e: float = 2.71828182845904523536028747135266250; /// log2(e) pub static log2_e: float = 1.44269504088896340735992468100189214; /// log10(e) pub static log10_e: float = 0.434294481903251827651128918916605082; /// ln(2.0) pub static ln_2: float = 0.693147180559945309417232121458176568; /// ln(10.0) pub static ln_10: float = 2.30258509299404568401799145468436421; } // // Section: String Conversions // /// /// Converts a float to a string /// /// # Arguments /// /// * num - The float value /// #[inline(always)] pub fn to_str(num: float) -> ~str { let (r, _) = strconv::to_str_common( &num, 10u, true, strconv::SignNeg, strconv::DigAll); r } /// /// Converts a float to a string in hexadecimal format /// /// # Arguments /// /// * num - The float value /// #[inline(always)] pub fn to_str_hex(num: float) -> ~str { let (r, _) = strconv::to_str_common( &num, 16u, true, strconv::SignNeg, strconv::DigAll); r } /// /// Converts a float to a string in a given radix /// /// # Arguments /// /// * num - The float value /// * radix - The base to use /// /// # Failure /// /// Fails if called on a special value like `inf`, `-inf` or `NaN` due to /// possible misinterpretation of the result at higher bases. If those values /// are expected, use `to_str_radix_special()` instead. /// #[inline(always)] pub fn to_str_radix(num: float, radix: uint) -> ~str { let (r, special) = strconv::to_str_common( &num, radix, true, strconv::SignNeg, strconv::DigAll); if special { fail!("number has a special value, \ try to_str_radix_special() if those are expected") } r } /// /// Converts a float to a string in a given radix, and a flag indicating /// whether it's a special value /// /// # Arguments /// /// * num - The float value /// * radix - The base to use /// #[inline(always)] pub fn to_str_radix_special(num: float, radix: uint) -> (~str, bool) { strconv::to_str_common(&num, radix, true, strconv::SignNeg, strconv::DigAll) } /// /// Converts a float to a string with exactly the number of /// provided significant digits /// /// # Arguments /// /// * num - The float value /// * digits - The number of significant digits /// #[inline(always)] pub fn to_str_exact(num: float, digits: uint) -> ~str { let (r, _) = strconv::to_str_common( &num, 10u, true, strconv::SignNeg, strconv::DigExact(digits)); r } /// /// Converts a float to a string with a maximum number of /// significant digits /// /// # Arguments /// /// * num - The float value /// * digits - The number of significant digits /// #[inline(always)] pub fn to_str_digits(num: float, digits: uint) -> ~str { let (r, _) = strconv::to_str_common( &num, 10u, true, strconv::SignNeg, strconv::DigMax(digits)); r } impl to_str::ToStr for float { #[inline(always)] fn to_str(&self) -> ~str { to_str_digits(*self, 8) } } impl num::ToStrRadix for float { #[inline(always)] fn to_str_radix(&self, radix: uint) -> ~str { to_str_radix(*self, radix) } } /// /// Convert a string in base 10 to a float. /// Accepts a optional decimal exponent. /// /// This function accepts strings such as /// /// * '3.14' /// * '+3.14', equivalent to '3.14' /// * '-3.14' /// * '2.5E10', or equivalently, '2.5e10' /// * '2.5E-10' /// * '.' (understood as 0) /// * '5.' /// * '.5', or, equivalently, '0.5' /// * '+inf', 'inf', '-inf', 'NaN' /// /// Leading and trailing whitespace represent an error. /// /// # Arguments /// /// * num - A string /// /// # Return value /// /// `none` if the string did not represent a valid number. Otherwise, /// `Some(n)` where `n` is the floating-point number represented by `num`. /// #[inline(always)] pub fn from_str(num: &str) -> Option { strconv::from_str_common(num, 10u, true, true, true, strconv::ExpDec, false, false) } /// /// Convert a string in base 16 to a float. /// Accepts a optional binary exponent. /// /// This function accepts strings such as /// /// * 'a4.fe' /// * '+a4.fe', equivalent to 'a4.fe' /// * '-a4.fe' /// * '2b.aP128', or equivalently, '2b.ap128' /// * '2b.aP-128' /// * '.' (understood as 0) /// * 'c.' /// * '.c', or, equivalently, '0.c' /// * '+inf', 'inf', '-inf', 'NaN' /// /// Leading and trailing whitespace represent an error. /// /// # Arguments /// /// * num - A string /// /// # Return value /// /// `none` if the string did not represent a valid number. Otherwise, /// `Some(n)` where `n` is the floating-point number represented by `[num]`. /// #[inline(always)] pub fn from_str_hex(num: &str) -> Option { strconv::from_str_common(num, 16u, true, true, true, strconv::ExpBin, false, false) } /// /// Convert a string in an given base to a float. /// /// Due to possible conflicts, this function does **not** accept /// the special values `inf`, `-inf`, `+inf` and `NaN`, **nor** /// does it recognize exponents of any kind. /// /// Leading and trailing whitespace represent an error. /// /// # Arguments /// /// * num - A string /// * radix - The base to use. Must lie in the range [2 .. 36] /// /// # Return value /// /// `none` if the string did not represent a valid number. Otherwise, /// `Some(n)` where `n` is the floating-point number represented by `num`. /// #[inline(always)] pub fn from_str_radix(num: &str, radix: uint) -> Option { strconv::from_str_common(num, radix, true, true, false, strconv::ExpNone, false, false) } impl FromStr for float { #[inline(always)] fn from_str(val: &str) -> Option { from_str(val) } } impl num::FromStrRadix for float { #[inline(always)] fn from_str_radix(val: &str, radix: uint) -> Option { from_str_radix(val, radix) } } // // Section: Arithmetics // /// /// Compute the exponentiation of an integer by another integer as a float /// /// # Arguments /// /// * x - The base /// * pow - The exponent /// /// # Return value /// /// `NaN` if both `x` and `pow` are `0u`, otherwise `x^pow` /// pub fn pow_with_uint(base: uint, pow: uint) -> float { if base == 0u { if pow == 0u { return NaN as float; } return 0.; } let mut my_pow = pow; let mut total = 1f; let mut multiplier = base as float; while (my_pow > 0u) { if my_pow % 2u == 1u { total = total * multiplier; } my_pow /= 2u; multiplier *= multiplier; } return total; } #[inline(always)] pub fn abs(x: float) -> float { f64::abs(x as f64) as float } #[inline(always)] pub fn sqrt(x: float) -> float { f64::sqrt(x as f64) as float } #[inline(always)] pub fn atan(x: float) -> float { f64::atan(x as f64) as float } #[inline(always)] pub fn sin(x: float) -> float { f64::sin(x as f64) as float } #[inline(always)] pub fn cos(x: float) -> float { f64::cos(x as f64) as float } #[inline(always)] pub fn tan(x: float) -> float { f64::tan(x as f64) as float } impl Num for float {} #[cfg(not(test))] impl Eq for float { #[inline(always)] fn eq(&self, other: &float) -> bool { (*self) == (*other) } #[inline(always)] fn ne(&self, other: &float) -> bool { (*self) != (*other) } } #[cfg(not(test))] impl ApproxEq for float { #[inline(always)] fn approx_epsilon() -> float { 1.0e-6 } #[inline(always)] fn approx_eq(&self, other: &float) -> bool { self.approx_eq_eps(other, &ApproxEq::approx_epsilon::()) } #[inline(always)] fn approx_eq_eps(&self, other: &float, approx_epsilon: &float) -> bool { (*self - *other).abs() < *approx_epsilon } } #[cfg(not(test))] impl Ord for float { #[inline(always)] fn lt(&self, other: &float) -> bool { (*self) < (*other) } #[inline(always)] fn le(&self, other: &float) -> bool { (*self) <= (*other) } #[inline(always)] fn ge(&self, other: &float) -> bool { (*self) >= (*other) } #[inline(always)] fn gt(&self, other: &float) -> bool { (*self) > (*other) } } impl Orderable for float { /// Returns `NaN` if either of the numbers are `NaN`. #[inline(always)] fn min(&self, other: &float) -> float { (*self as f64).min(&(*other as f64)) as float } /// Returns `NaN` if either of the numbers are `NaN`. #[inline(always)] fn max(&self, other: &float) -> float { (*self as f64).max(&(*other as f64)) as float } /// Returns the number constrained within the range `mn <= self <= mx`. /// If any of the numbers are `NaN` then `NaN` is returned. #[inline(always)] fn clamp(&self, mn: &float, mx: &float) -> float { (*self as f64).clamp(&(*mn as f64), &(*mx as f64)) as float } } impl Zero for float { #[inline(always)] fn zero() -> float { 0.0 } /// Returns true if the number is equal to either `0.0` or `-0.0` #[inline(always)] fn is_zero(&self) -> bool { *self == 0.0 || *self == -0.0 } } impl One for float { #[inline(always)] fn one() -> float { 1.0 } } impl Round for float { /// Round half-way cases toward `neg_infinity` #[inline(always)] fn floor(&self) -> float { floor(*self as f64) as float } /// Round half-way cases toward `infinity` #[inline(always)] fn ceil(&self) -> float { ceil(*self as f64) as float } /// Round half-way cases away from `0.0` #[inline(always)] fn round(&self) -> float { round(*self as f64) as float } /// The integer part of the number (rounds towards `0.0`) #[inline(always)] fn trunc(&self) -> float { trunc(*self as f64) as float } /// /// The fractional part of the number, satisfying: /// /// ~~~ /// assert!(x == trunc(x) + fract(x)) /// ~~~ /// #[inline(always)] fn fract(&self) -> float { *self - self.trunc() } } impl Fractional for float { /// The reciprocal (multiplicative inverse) of the number #[inline(always)] fn recip(&self) -> float { 1.0 / *self } } impl Algebraic for float { #[inline(always)] fn pow(&self, n: float) -> float { (*self as f64).pow(n as f64) as float } #[inline(always)] fn sqrt(&self) -> float { (*self as f64).sqrt() as float } #[inline(always)] fn rsqrt(&self) -> float { (*self as f64).rsqrt() as float } #[inline(always)] fn cbrt(&self) -> float { (*self as f64).cbrt() as float } #[inline(always)] fn hypot(&self, other: float) -> float { (*self as f64).hypot(other as f64) as float } } impl Trigonometric for float { #[inline(always)] fn sin(&self) -> float { (*self as f64).sin() as float } #[inline(always)] fn cos(&self) -> float { (*self as f64).cos() as float } #[inline(always)] fn tan(&self) -> float { (*self as f64).tan() as float } #[inline(always)] fn asin(&self) -> float { (*self as f64).asin() as float } #[inline(always)] fn acos(&self) -> float { (*self as f64).acos() as float } #[inline(always)] fn atan(&self) -> float { (*self as f64).atan() as float } #[inline(always)] fn atan2(&self, other: float) -> float { (*self as f64).atan2(other as f64) as float } } impl Exponential for float { /// Returns the exponential of the number #[inline(always)] fn exp(&self) -> float { (*self as f64).exp() as float } /// Returns 2 raised to the power of the number #[inline(always)] fn exp2(&self) -> float { (*self as f64).exp2() as float } /// Returns the natural logarithm of the number #[inline(always)] fn ln(&self) -> float { (*self as f64).ln() as float } /// Returns the logarithm of the number with respect to an arbitrary base #[inline(always)] fn log(&self, base: float) -> float { (*self as f64).log(base as f64) as float } /// Returns the base 2 logarithm of the number #[inline(always)] fn log2(&self) -> float { (*self as f64).log2() as float } /// Returns the base 10 logarithm of the number #[inline(always)] fn log10(&self) -> float { (*self as f64).log10() as float } } impl Hyperbolic for float { #[inline(always)] fn sinh(&self) -> float { (*self as f64).sinh() as float } #[inline(always)] fn cosh(&self) -> float { (*self as f64).cosh() as float } #[inline(always)] fn tanh(&self) -> float { (*self as f64).tanh() as float } /// /// Inverse hyperbolic sine /// /// # Returns /// /// - on success, the inverse hyperbolic sine of `self` will be returned /// - `self` if `self` is `0.0`, `-0.0`, `infinity`, or `neg_infinity` /// - `NaN` if `self` is `NaN` /// #[inline(always)] fn asinh(&self) -> float { (*self as f64).asinh() as float } /// /// Inverse hyperbolic cosine /// /// # Returns /// /// - on success, the inverse hyperbolic cosine of `self` will be returned /// - `infinity` if `self` is `infinity` /// - `NaN` if `self` is `NaN` or `self < 1.0` (including `neg_infinity`) /// #[inline(always)] fn acosh(&self) -> float { (*self as f64).acosh() as float } /// /// Inverse hyperbolic tangent /// /// # Returns /// /// - on success, the inverse hyperbolic tangent of `self` will be returned /// - `self` if `self` is `0.0` or `-0.0` /// - `infinity` if `self` is `1.0` /// - `neg_infinity` if `self` is `-1.0` /// - `NaN` if the `self` is `NaN` or outside the domain of `-1.0 <= self <= 1.0` /// (including `infinity` and `neg_infinity`) /// #[inline(always)] fn atanh(&self) -> float { (*self as f64).atanh() as float } } impl Real for float { /// Archimedes' constant #[inline(always)] fn pi() -> float { 3.14159265358979323846264338327950288 } /// 2.0 * pi #[inline(always)] fn two_pi() -> float { 6.28318530717958647692528676655900576 } /// pi / 2.0 #[inline(always)] fn frac_pi_2() -> float { 1.57079632679489661923132169163975144 } /// pi / 3.0 #[inline(always)] fn frac_pi_3() -> float { 1.04719755119659774615421446109316763 } /// pi / 4.0 #[inline(always)] fn frac_pi_4() -> float { 0.785398163397448309615660845819875721 } /// pi / 6.0 #[inline(always)] fn frac_pi_6() -> float { 0.52359877559829887307710723054658381 } /// pi / 8.0 #[inline(always)] fn frac_pi_8() -> float { 0.39269908169872415480783042290993786 } /// 1.0 / pi #[inline(always)] fn frac_1_pi() -> float { 0.318309886183790671537767526745028724 } /// 2.0 / pi #[inline(always)] fn frac_2_pi() -> float { 0.636619772367581343075535053490057448 } /// 2 .0/ sqrt(pi) #[inline(always)] fn frac_2_sqrtpi() -> float { 1.12837916709551257389615890312154517 } /// sqrt(2.0) #[inline(always)] fn sqrt2() -> float { 1.41421356237309504880168872420969808 } /// 1.0 / sqrt(2.0) #[inline(always)] fn frac_1_sqrt2() -> float { 0.707106781186547524400844362104849039 } /// Euler's number #[inline(always)] fn e() -> float { 2.71828182845904523536028747135266250 } /// log2(e) #[inline(always)] fn log2_e() -> float { 1.44269504088896340735992468100189214 } /// log10(e) #[inline(always)] fn log10_e() -> float { 0.434294481903251827651128918916605082 } /// ln(2.0) #[inline(always)] fn ln_2() -> float { 0.693147180559945309417232121458176568 } /// ln(10.0) #[inline(always)] fn ln_10() -> float { 2.30258509299404568401799145468436421 } /// Converts to degrees, assuming the number is in radians #[inline(always)] fn to_degrees(&self) -> float { (*self as f64).to_degrees() as float } /// Converts to radians, assuming the number is in degrees #[inline(always)] fn to_radians(&self) -> float { (*self as f64).to_radians() as float } } impl RealExt for float { #[inline(always)] fn lgamma(&self) -> (int, float) { let mut sign = 0; let result = lgamma(*self as f64, &mut sign); (sign as int, result as float) } #[inline(always)] fn tgamma(&self) -> float { tgamma(*self as f64) as float } #[inline(always)] fn j0(&self) -> float { j0(*self as f64) as float } #[inline(always)] fn j1(&self) -> float { j1(*self as f64) as float } #[inline(always)] fn jn(&self, n: int) -> float { jn(n as c_int, *self as f64) as float } #[inline(always)] fn y0(&self) -> float { y0(*self as f64) as float } #[inline(always)] fn y1(&self) -> float { y1(*self as f64) as float } #[inline(always)] fn yn(&self, n: int) -> float { yn(n as c_int, *self as f64) as float } } #[cfg(not(test))] impl Add for float { #[inline(always)] fn add(&self, other: &float) -> float { *self + *other } } #[cfg(not(test))] impl Sub for float { #[inline(always)] fn sub(&self, other: &float) -> float { *self - *other } } #[cfg(not(test))] impl Mul for float { #[inline(always)] fn mul(&self, other: &float) -> float { *self * *other } } #[cfg(not(test))] impl Div for float { #[inline(always)] fn div(&self, other: &float) -> float { *self / *other } } #[cfg(not(test))] impl Rem for float { #[inline(always)] fn rem(&self, other: &float) -> float { *self % *other } } #[cfg(not(test))] impl Neg for float { #[inline(always)] fn neg(&self) -> float { -*self } } impl Signed for float { /// Computes the absolute value. Returns `NaN` if the number is `NaN`. #[inline(always)] fn abs(&self) -> float { abs(*self) } /// /// The positive difference of two numbers. Returns `0.0` if the number is less than or /// equal to `other`, otherwise the difference between`self` and `other` is returned. /// #[inline(always)] fn abs_sub(&self, other: &float) -> float { (*self as f64).abs_sub(&(*other as f64)) as float } /// /// # Returns /// /// - `1.0` if the number is positive, `+0.0` or `infinity` /// - `-1.0` if the number is negative, `-0.0` or `neg_infinity` /// - `NaN` if the number is NaN /// #[inline(always)] fn signum(&self) -> float { if self.is_NaN() { NaN } else { f64::copysign(1.0, *self as f64) as float } } /// Returns `true` if the number is positive, including `+0.0` and `infinity` #[inline(always)] fn is_positive(&self) -> bool { *self > 0.0 || (1.0 / *self) == infinity } /// Returns `true` if the number is negative, including `-0.0` and `neg_infinity` #[inline(always)] fn is_negative(&self) -> bool { *self < 0.0 || (1.0 / *self) == neg_infinity } } impl Bounded for float { #[inline(always)] fn min_value() -> float { Bounded::min_value::() as float } #[inline(always)] fn max_value() -> float { Bounded::max_value::() as float } } impl Primitive for float { #[inline(always)] fn bits() -> uint { Primitive::bits::() } #[inline(always)] fn bytes() -> uint { Primitive::bytes::() } } impl Float for float { #[inline(always)] fn NaN() -> float { Float::NaN::() as float } #[inline(always)] fn infinity() -> float { Float::infinity::() as float } #[inline(always)] fn neg_infinity() -> float { Float::neg_infinity::() as float } #[inline(always)] fn neg_zero() -> float { Float::neg_zero::() as float } /// Returns `true` if the number is NaN #[inline(always)] fn is_NaN(&self) -> bool { (*self as f64).is_NaN() } /// Returns `true` if the number is infinite #[inline(always)] fn is_infinite(&self) -> bool { (*self as f64).is_infinite() } /// Returns `true` if the number is neither infinite or NaN #[inline(always)] fn is_finite(&self) -> bool { (*self as f64).is_finite() } /// Returns `true` if the number is neither zero, infinite, subnormal or NaN #[inline(always)] fn is_normal(&self) -> bool { (*self as f64).is_normal() } /// Returns the floating point category of the number. If only one property is going to /// be tested, it is generally faster to use the specific predicate instead. #[inline(always)] fn classify(&self) -> FPCategory { (*self as f64).classify() } #[inline(always)] fn mantissa_digits() -> uint { Float::mantissa_digits::() } #[inline(always)] fn digits() -> uint { Float::digits::() } #[inline(always)] fn epsilon() -> float { Float::epsilon::() as float } #[inline(always)] fn min_exp() -> int { Float::min_exp::() } #[inline(always)] fn max_exp() -> int { Float::max_exp::() } #[inline(always)] fn min_10_exp() -> int { Float::min_10_exp::() } #[inline(always)] fn max_10_exp() -> int { Float::max_10_exp::() } /// Constructs a floating point number by multiplying `x` by 2 raised to the power of `exp` #[inline(always)] fn ldexp(x: float, exp: int) -> float { Float::ldexp(x as f64, exp) as float } /// /// Breaks the number into a normalized fraction and a base-2 exponent, satisfying: /// /// - `self = x * pow(2, exp)` /// - `0.5 <= abs(x) < 1.0` /// #[inline(always)] fn frexp(&self) -> (float, int) { match (*self as f64).frexp() { (x, exp) => (x as float, exp) } } /// /// Returns the exponential of the number, minus `1`, in a way that is accurate /// even if the number is close to zero /// #[inline(always)] fn exp_m1(&self) -> float { (*self as f64).exp_m1() as float } /// /// Returns the natural logarithm of the number plus `1` (`ln(1+n)`) more accurately /// than if the operations were performed separately /// #[inline(always)] fn ln_1p(&self) -> float { (*self as f64).ln_1p() as float } /// /// Fused multiply-add. Computes `(self * a) + b` with only one rounding error. This /// produces a more accurate result with better performance than a separate multiplication /// operation followed by an add. /// #[inline(always)] fn mul_add(&self, a: float, b: float) -> float { mul_add(*self as f64, a as f64, b as f64) as float } /// Returns the next representable floating-point value in the direction of `other` #[inline(always)] fn next_after(&self, other: float) -> float { next_after(*self as f64, other as f64) as float } } #[cfg(test)] mod tests { use num::*; use super::*; use prelude::*; #[test] fn test_num() { num::test_num(10f, 2f); } #[test] fn test_min() { assert_eq!(1f.min(&2f), 1f); assert_eq!(2f.min(&1f), 1f); } #[test] fn test_max() { assert_eq!(1f.max(&2f), 2f); assert_eq!(2f.max(&1f), 2f); } #[test] fn test_clamp() { assert_eq!(1f.clamp(&2f, &4f), 2f); assert_eq!(8f.clamp(&2f, &4f), 4f); assert_eq!(3f.clamp(&2f, &4f), 3f); assert!(3f.clamp(&Float::NaN::(), &4f).is_NaN()); assert!(3f.clamp(&2f, &Float::NaN::()).is_NaN()); assert!(Float::NaN::().clamp(&2f, &4f).is_NaN()); } #[test] fn test_floor() { assert_approx_eq!(1.0f.floor(), 1.0f); assert_approx_eq!(1.3f.floor(), 1.0f); assert_approx_eq!(1.5f.floor(), 1.0f); assert_approx_eq!(1.7f.floor(), 1.0f); assert_approx_eq!(0.0f.floor(), 0.0f); assert_approx_eq!((-0.0f).floor(), -0.0f); assert_approx_eq!((-1.0f).floor(), -1.0f); assert_approx_eq!((-1.3f).floor(), -2.0f); assert_approx_eq!((-1.5f).floor(), -2.0f); assert_approx_eq!((-1.7f).floor(), -2.0f); } #[test] fn test_ceil() { assert_approx_eq!(1.0f.ceil(), 1.0f); assert_approx_eq!(1.3f.ceil(), 2.0f); assert_approx_eq!(1.5f.ceil(), 2.0f); assert_approx_eq!(1.7f.ceil(), 2.0f); assert_approx_eq!(0.0f.ceil(), 0.0f); assert_approx_eq!((-0.0f).ceil(), -0.0f); assert_approx_eq!((-1.0f).ceil(), -1.0f); assert_approx_eq!((-1.3f).ceil(), -1.0f); assert_approx_eq!((-1.5f).ceil(), -1.0f); assert_approx_eq!((-1.7f).ceil(), -1.0f); } #[test] fn test_round() { assert_approx_eq!(1.0f.round(), 1.0f); assert_approx_eq!(1.3f.round(), 1.0f); assert_approx_eq!(1.5f.round(), 2.0f); assert_approx_eq!(1.7f.round(), 2.0f); assert_approx_eq!(0.0f.round(), 0.0f); assert_approx_eq!((-0.0f).round(), -0.0f); assert_approx_eq!((-1.0f).round(), -1.0f); assert_approx_eq!((-1.3f).round(), -1.0f); assert_approx_eq!((-1.5f).round(), -2.0f); assert_approx_eq!((-1.7f).round(), -2.0f); } #[test] fn test_trunc() { assert_approx_eq!(1.0f.trunc(), 1.0f); assert_approx_eq!(1.3f.trunc(), 1.0f); assert_approx_eq!(1.5f.trunc(), 1.0f); assert_approx_eq!(1.7f.trunc(), 1.0f); assert_approx_eq!(0.0f.trunc(), 0.0f); assert_approx_eq!((-0.0f).trunc(), -0.0f); assert_approx_eq!((-1.0f).trunc(), -1.0f); assert_approx_eq!((-1.3f).trunc(), -1.0f); assert_approx_eq!((-1.5f).trunc(), -1.0f); assert_approx_eq!((-1.7f).trunc(), -1.0f); } #[test] fn test_fract() { assert_approx_eq!(1.0f.fract(), 0.0f); assert_approx_eq!(1.3f.fract(), 0.3f); assert_approx_eq!(1.5f.fract(), 0.5f); assert_approx_eq!(1.7f.fract(), 0.7f); assert_approx_eq!(0.0f.fract(), 0.0f); assert_approx_eq!((-0.0f).fract(), -0.0f); assert_approx_eq!((-1.0f).fract(), -0.0f); assert_approx_eq!((-1.3f).fract(), -0.3f); assert_approx_eq!((-1.5f).fract(), -0.5f); assert_approx_eq!((-1.7f).fract(), -0.7f); } #[test] fn test_asinh() { assert_eq!(0.0f.asinh(), 0.0f); assert_eq!((-0.0f).asinh(), -0.0f); assert_eq!(Float::infinity::().asinh(), Float::infinity::()); assert_eq!(Float::neg_infinity::().asinh(), Float::neg_infinity::()); assert!(Float::NaN::().asinh().is_NaN()); assert_approx_eq!(2.0f.asinh(), 1.443635475178810342493276740273105f); assert_approx_eq!((-2.0f).asinh(), -1.443635475178810342493276740273105f); } #[test] fn test_acosh() { assert_eq!(1.0f.acosh(), 0.0f); assert!(0.999f.acosh().is_NaN()); assert_eq!(Float::infinity::().acosh(), Float::infinity::()); assert!(Float::neg_infinity::().acosh().is_NaN()); assert!(Float::NaN::().acosh().is_NaN()); assert_approx_eq!(2.0f.acosh(), 1.31695789692481670862504634730796844f); assert_approx_eq!(3.0f.acosh(), 1.76274717403908605046521864995958461f); } #[test] fn test_atanh() { assert_eq!(0.0f.atanh(), 0.0f); assert_eq!((-0.0f).atanh(), -0.0f); assert_eq!(1.0f.atanh(), Float::infinity::()); assert_eq!((-1.0f).atanh(), Float::neg_infinity::()); assert!(2f64.atanh().atanh().is_NaN()); assert!((-2f64).atanh().atanh().is_NaN()); assert!(Float::infinity::().atanh().is_NaN()); assert!(Float::neg_infinity::().atanh().is_NaN()); assert!(Float::NaN::().atanh().is_NaN()); assert_approx_eq!(0.5f.atanh(), 0.54930614433405484569762261846126285f); assert_approx_eq!((-0.5f).atanh(), -0.54930614433405484569762261846126285f); } #[test] fn test_real_consts() { assert_approx_eq!(Real::two_pi::(), 2f * Real::pi::()); assert_approx_eq!(Real::frac_pi_2::(), Real::pi::() / 2f); assert_approx_eq!(Real::frac_pi_3::(), Real::pi::() / 3f); assert_approx_eq!(Real::frac_pi_4::(), Real::pi::() / 4f); assert_approx_eq!(Real::frac_pi_6::(), Real::pi::() / 6f); assert_approx_eq!(Real::frac_pi_8::(), Real::pi::() / 8f); assert_approx_eq!(Real::frac_1_pi::(), 1f / Real::pi::()); assert_approx_eq!(Real::frac_2_pi::(), 2f / Real::pi::()); assert_approx_eq!(Real::frac_2_sqrtpi::(), 2f / Real::pi::().sqrt()); assert_approx_eq!(Real::sqrt2::(), 2f.sqrt()); assert_approx_eq!(Real::frac_1_sqrt2::(), 1f / 2f.sqrt()); assert_approx_eq!(Real::log2_e::(), Real::e::().log2()); assert_approx_eq!(Real::log10_e::(), Real::e::().log10()); assert_approx_eq!(Real::ln_2::(), 2f.ln()); assert_approx_eq!(Real::ln_10::(), 10f.ln()); } #[test] fn test_abs() { assert_eq!(infinity.abs(), infinity); assert_eq!(1f.abs(), 1f); assert_eq!(0f.abs(), 0f); assert_eq!((-0f).abs(), 0f); assert_eq!((-1f).abs(), 1f); assert_eq!(neg_infinity.abs(), infinity); assert_eq!((1f/neg_infinity).abs(), 0f); assert!(NaN.abs().is_NaN()); } #[test] fn test_abs_sub() { assert_eq!((-1f).abs_sub(&1f), 0f); assert_eq!(1f.abs_sub(&1f), 0f); assert_eq!(1f.abs_sub(&0f), 1f); assert_eq!(1f.abs_sub(&-1f), 2f); assert_eq!(neg_infinity.abs_sub(&0f), 0f); assert_eq!(infinity.abs_sub(&1f), infinity); assert_eq!(0f.abs_sub(&neg_infinity), infinity); assert_eq!(0f.abs_sub(&infinity), 0f); assert!(NaN.abs_sub(&-1f).is_NaN()); assert!(1f.abs_sub(&NaN).is_NaN()); } #[test] fn test_signum() { assert_eq!(infinity.signum(), 1f); assert_eq!(1f.signum(), 1f); assert_eq!(0f.signum(), 1f); assert_eq!((-0f).signum(), -1f); assert_eq!((-1f).signum(), -1f); assert_eq!(neg_infinity.signum(), -1f); assert_eq!((1f/neg_infinity).signum(), -1f); assert!(NaN.signum().is_NaN()); } #[test] fn test_is_positive() { assert!(infinity.is_positive()); assert!(1f.is_positive()); assert!(0f.is_positive()); assert!(!(-0f).is_positive()); assert!(!(-1f).is_positive()); assert!(!neg_infinity.is_positive()); assert!(!(1f/neg_infinity).is_positive()); assert!(!NaN.is_positive()); } #[test] fn test_is_negative() { assert!(!infinity.is_negative()); assert!(!1f.is_negative()); assert!(!0f.is_negative()); assert!((-0f).is_negative()); assert!((-1f).is_negative()); assert!(neg_infinity.is_negative()); assert!((1f/neg_infinity).is_negative()); assert!(!NaN.is_negative()); } #[test] fn test_approx_eq() { assert!(1.0f.approx_eq(&1f)); assert!(0.9999999f.approx_eq(&1f)); assert!(1.000001f.approx_eq_eps(&1f, &1.0e-5)); assert!(1.0000001f.approx_eq_eps(&1f, &1.0e-6)); assert!(!1.0000001f.approx_eq_eps(&1f, &1.0e-7)); } #[test] fn test_primitive() { assert_eq!(Primitive::bits::(), sys::size_of::() * 8); assert_eq!(Primitive::bytes::(), sys::size_of::()); } #[test] fn test_is_normal() { assert!(!Float::NaN::().is_normal()); assert!(!Float::infinity::().is_normal()); assert!(!Float::neg_infinity::().is_normal()); assert!(!Zero::zero::().is_normal()); assert!(!Float::neg_zero::().is_normal()); assert!(1f.is_normal()); assert!(1e-307f.is_normal()); assert!(!1e-308f.is_normal()); } #[test] fn test_classify() { assert_eq!(Float::NaN::().classify(), FPNaN); assert_eq!(Float::infinity::().classify(), FPInfinite); assert_eq!(Float::neg_infinity::().classify(), FPInfinite); assert_eq!(Zero::zero::().classify(), FPZero); assert_eq!(Float::neg_zero::().classify(), FPZero); assert_eq!(1f.classify(), FPNormal); assert_eq!(1e-307f.classify(), FPNormal); assert_eq!(1e-308f.classify(), FPSubnormal); } #[test] fn test_ldexp() { // We have to use from_str until base-2 exponents // are supported in floating-point literals let f1: float = from_str_hex("1p-123").unwrap(); let f2: float = from_str_hex("1p-111").unwrap(); assert_eq!(Float::ldexp(1f, -123), f1); assert_eq!(Float::ldexp(1f, -111), f2); assert_eq!(Float::ldexp(0f, -123), 0f); assert_eq!(Float::ldexp(-0f, -123), -0f); assert_eq!(Float::ldexp(Float::infinity::(), -123), Float::infinity::()); assert_eq!(Float::ldexp(Float::neg_infinity::(), -123), Float::neg_infinity::()); assert!(Float::ldexp(Float::NaN::(), -123).is_NaN()); } #[test] fn test_frexp() { // We have to use from_str until base-2 exponents // are supported in floating-point literals let f1: float = from_str_hex("1p-123").unwrap(); let f2: float = from_str_hex("1p-111").unwrap(); let (x1, exp1) = f1.frexp(); let (x2, exp2) = f2.frexp(); assert_eq!((x1, exp1), (0.5f, -122)); assert_eq!((x2, exp2), (0.5f, -110)); assert_eq!(Float::ldexp(x1, exp1), f1); assert_eq!(Float::ldexp(x2, exp2), f2); assert_eq!(0f.frexp(), (0f, 0)); assert_eq!((-0f).frexp(), (-0f, 0)); assert_eq!(match Float::infinity::().frexp() { (x, _) => x }, Float::infinity::()) assert_eq!(match Float::neg_infinity::().frexp() { (x, _) => x }, Float::neg_infinity::()) assert!(match Float::NaN::().frexp() { (x, _) => x.is_NaN() }) } #[test] pub fn test_to_str_exact_do_decimal() { let s = to_str_exact(5.0, 4u); assert_eq!(s, ~"5.0000"); } #[test] pub fn test_from_str() { assert_eq!(from_str(~"3"), Some(3.)); assert_eq!(from_str(~"3.14"), Some(3.14)); assert_eq!(from_str(~"+3.14"), Some(3.14)); assert_eq!(from_str(~"-3.14"), Some(-3.14)); assert_eq!(from_str(~"2.5E10"), Some(25000000000.)); assert_eq!(from_str(~"2.5e10"), Some(25000000000.)); assert_eq!(from_str(~"25000000000.E-10"), Some(2.5)); assert_eq!(from_str(~"."), Some(0.)); assert_eq!(from_str(~".e1"), Some(0.)); assert_eq!(from_str(~".e-1"), Some(0.)); assert_eq!(from_str(~"5."), Some(5.)); assert_eq!(from_str(~".5"), Some(0.5)); assert_eq!(from_str(~"0.5"), Some(0.5)); assert_eq!(from_str(~"-.5"), Some(-0.5)); assert_eq!(from_str(~"-5"), Some(-5.)); assert_eq!(from_str(~"inf"), Some(infinity)); assert_eq!(from_str(~"+inf"), Some(infinity)); assert_eq!(from_str(~"-inf"), Some(neg_infinity)); // note: NaN != NaN, hence this slightly complex test match from_str(~"NaN") { Some(f) => assert!(f.is_NaN()), None => fail!() } // note: -0 == 0, hence these slightly more complex tests match from_str(~"-0") { Some(v) if v.is_zero() => assert!(v.is_negative()), _ => fail!() } match from_str(~"0") { Some(v) if v.is_zero() => assert!(v.is_positive()), _ => fail!() } assert!(from_str(~"").is_none()); assert!(from_str(~"x").is_none()); assert!(from_str(~" ").is_none()); assert!(from_str(~" ").is_none()); assert!(from_str(~"e").is_none()); assert!(from_str(~"E").is_none()); assert!(from_str(~"E1").is_none()); assert!(from_str(~"1e1e1").is_none()); assert!(from_str(~"1e1.1").is_none()); assert!(from_str(~"1e1-1").is_none()); } #[test] pub fn test_from_str_hex() { assert_eq!(from_str_hex(~"a4"), Some(164.)); assert_eq!(from_str_hex(~"a4.fe"), Some(164.9921875)); assert_eq!(from_str_hex(~"-a4.fe"), Some(-164.9921875)); assert_eq!(from_str_hex(~"+a4.fe"), Some(164.9921875)); assert_eq!(from_str_hex(~"ff0P4"), Some(0xff00 as float)); assert_eq!(from_str_hex(~"ff0p4"), Some(0xff00 as float)); assert_eq!(from_str_hex(~"ff0p-4"), Some(0xff as float)); assert_eq!(from_str_hex(~"."), Some(0.)); assert_eq!(from_str_hex(~".p1"), Some(0.)); assert_eq!(from_str_hex(~".p-1"), Some(0.)); assert_eq!(from_str_hex(~"f."), Some(15.)); assert_eq!(from_str_hex(~".f"), Some(0.9375)); assert_eq!(from_str_hex(~"0.f"), Some(0.9375)); assert_eq!(from_str_hex(~"-.f"), Some(-0.9375)); assert_eq!(from_str_hex(~"-f"), Some(-15.)); assert_eq!(from_str_hex(~"inf"), Some(infinity)); assert_eq!(from_str_hex(~"+inf"), Some(infinity)); assert_eq!(from_str_hex(~"-inf"), Some(neg_infinity)); // note: NaN != NaN, hence this slightly complex test match from_str_hex(~"NaN") { Some(f) => assert!(f.is_NaN()), None => fail!() } // note: -0 == 0, hence these slightly more complex tests match from_str_hex(~"-0") { Some(v) if v.is_zero() => assert!(v.is_negative()), _ => fail!() } match from_str_hex(~"0") { Some(v) if v.is_zero() => assert!(v.is_positive()), _ => fail!() } assert_eq!(from_str_hex(~"e"), Some(14.)); assert_eq!(from_str_hex(~"E"), Some(14.)); assert_eq!(from_str_hex(~"E1"), Some(225.)); assert_eq!(from_str_hex(~"1e1e1"), Some(123361.)); assert_eq!(from_str_hex(~"1e1.1"), Some(481.0625)); assert!(from_str_hex(~"").is_none()); assert!(from_str_hex(~"x").is_none()); assert!(from_str_hex(~" ").is_none()); assert!(from_str_hex(~" ").is_none()); assert!(from_str_hex(~"p").is_none()); assert!(from_str_hex(~"P").is_none()); assert!(from_str_hex(~"P1").is_none()); assert!(from_str_hex(~"1p1p1").is_none()); assert!(from_str_hex(~"1p1.1").is_none()); assert!(from_str_hex(~"1p1-1").is_none()); } #[test] pub fn test_to_str_hex() { assert_eq!(to_str_hex(164.), ~"a4"); assert_eq!(to_str_hex(164.9921875), ~"a4.fe"); assert_eq!(to_str_hex(-164.9921875), ~"-a4.fe"); assert_eq!(to_str_hex(0xff00 as float), ~"ff00"); assert_eq!(to_str_hex(-(0xff00 as float)), ~"-ff00"); assert_eq!(to_str_hex(0.), ~"0"); assert_eq!(to_str_hex(15.), ~"f"); assert_eq!(to_str_hex(-15.), ~"-f"); assert_eq!(to_str_hex(0.9375), ~"0.f"); assert_eq!(to_str_hex(-0.9375), ~"-0.f"); assert_eq!(to_str_hex(infinity), ~"inf"); assert_eq!(to_str_hex(neg_infinity), ~"-inf"); assert_eq!(to_str_hex(NaN), ~"NaN"); assert_eq!(to_str_hex(0.), ~"0"); assert_eq!(to_str_hex(-0.), ~"-0"); } #[test] pub fn test_to_str_radix() { assert_eq!(to_str_radix(36., 36u), ~"10"); assert_eq!(to_str_radix(8.125, 2u), ~"1000.001"); } #[test] pub fn test_from_str_radix() { assert_eq!(from_str_radix(~"10", 36u), Some(36.)); assert_eq!(from_str_radix(~"1000.001", 2u), Some(8.125)); } #[test] pub fn test_to_str_inf() { assert_eq!(to_str_digits(infinity, 10u), ~"inf"); assert_eq!(to_str_digits(-infinity, 10u), ~"-inf"); } }