// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Numeric traits and functions for the built-in numeric types. #![stable(feature = "rust1", since = "1.0.0")] #![allow(missing_docs)] use self::wrapping::OverflowingOps; use char::CharExt; use cmp::{Eq, PartialOrd}; use fmt; use intrinsics; use marker::Copy; use mem::size_of; use option::Option::{self, Some, None}; use result::Result::{self, Ok, Err}; use str::{FromStr, StrExt}; /// Provides intentionally-wrapped arithmetic on `T`. /// /// Operations like `+` on `u32` values is intended to never overflow, /// and in some debug configurations overflow is detected and results /// in a panic. While most arithmetic falls into this category, some /// code explicitly expects and relies upon modular arithmetic (e.g., /// hashing). /// /// Wrapping arithmetic can be achieved either through methods like /// `wrapping_add`, or through the `Wrapping` type, which says that /// all standard arithmetic operations on the underlying value are /// intended to have wrapping semantics. #[stable(feature = "rust1", since = "1.0.0")] #[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Copy, Debug)] pub struct Wrapping(#[stable(feature = "rust1", since = "1.0.0")] pub T); #[unstable(feature = "core", reason = "may be removed or relocated")] pub mod wrapping; #[unstable(feature = "core", reason = "internal routines only exposed for testing")] pub mod flt2dec; /// Types that have a "zero" value. /// /// This trait is intended for use in conjunction with `Add`, as an identity: /// `x + T::zero() == x`. #[unstable(feature = "zero_one", reason = "unsure of placement, wants to use associated constants")] pub trait Zero { /// The "zero" (usually, additive identity) for this type. fn zero() -> Self; } /// Types that have a "one" value. /// /// This trait is intended for use in conjunction with `Mul`, as an identity: /// `x * T::one() == x`. #[unstable(feature = "zero_one", reason = "unsure of placement, wants to use associated constants")] pub trait One { /// The "one" (usually, multiplicative identity) for this type. fn one() -> Self; } macro_rules! zero_one_impl { ($($t:ty)*) => ($( impl Zero for $t { #[inline] fn zero() -> $t { 0 } } impl One for $t { #[inline] fn one() -> $t { 1 } } )*) } zero_one_impl! { u8 u16 u32 u64 usize i8 i16 i32 i64 isize } macro_rules! zero_one_impl_float { ($($t:ty)*) => ($( impl Zero for $t { #[inline] fn zero() -> $t { 0.0 } } impl One for $t { #[inline] fn one() -> $t { 1.0 } } )*) } zero_one_impl_float! { f32 f64 } macro_rules! checked_op { ($T:ty, $U:ty, $op:path, $x:expr, $y:expr) => {{ let (result, overflowed) = unsafe { $op($x as $U, $y as $U) }; if overflowed { None } else { Some(result as $T) } }} } /// Swapping a single byte is a no-op. This is marked as `unsafe` for /// consistency with the other `bswap` intrinsics. unsafe fn bswap8(x: u8) -> u8 { x } // `Int` + `SignedInt` implemented for signed integers macro_rules! int_impl { ($T:ident = $ActualT:ty, $UnsignedT:ty, $BITS:expr, $add_with_overflow:path, $sub_with_overflow:path, $mul_with_overflow:path) => { /// Returns the smallest value that can be represented by this integer type. #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn min_value() -> $T { (-1 as $T) << ($BITS - 1) } /// Returns the largest value that can be represented by this integer type. #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn max_value() -> $T { let min = $T::min_value(); !min } /// Converts a string slice in a given base to an integer. /// /// Leading and trailing whitespace represent an error. /// /// # Arguments /// /// * src - A string slice /// * radix - The base to use. Must lie in the range [2 .. 36] /// /// # Return value /// /// `Err(ParseIntError)` if the string did not represent a valid number. /// Otherwise, `Ok(n)` where `n` is the integer represented by `src`. #[stable(feature = "rust1", since = "1.0.0")] #[allow(deprecated)] pub fn from_str_radix(src: &str, radix: u32) -> Result<$T, ParseIntError> { from_str_radix(src, radix) } /// Returns the number of ones in the binary representation of `self`. /// /// # Examples /// /// ```rust /// let n = 0b01001100u8; /// /// assert_eq!(n.count_ones(), 3); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn count_ones(self) -> u32 { (self as $UnsignedT).count_ones() } /// Returns the number of zeros in the binary representation of `self`. /// /// # Examples /// /// ```rust /// let n = 0b01001100u8; /// /// assert_eq!(n.count_zeros(), 5); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn count_zeros(self) -> u32 { (!self).count_ones() } /// Returns the number of leading zeros in the binary representation /// of `self`. /// /// # Examples /// /// ```rust /// let n = 0b0101000u16; /// /// assert_eq!(n.leading_zeros(), 10); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn leading_zeros(self) -> u32 { (self as $UnsignedT).leading_zeros() } /// Returns the number of trailing zeros in the binary representation /// of `self`. /// /// # Examples /// /// ```rust /// let n = 0b0101000u16; /// /// assert_eq!(n.trailing_zeros(), 3); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn trailing_zeros(self) -> u32 { (self as $UnsignedT).trailing_zeros() } /// Shifts the bits to the left by a specified amount, `n`, /// wrapping the truncated bits to the end of the resulting integer. /// /// # Examples /// /// ```rust /// let n = 0x0123456789ABCDEFu64; /// let m = 0x3456789ABCDEF012u64; /// /// assert_eq!(n.rotate_left(12), m); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn rotate_left(self, n: u32) -> $T { (self as $UnsignedT).rotate_left(n) as $T } /// Shifts the bits to the right by a specified amount, `n`, /// wrapping the truncated bits to the beginning of the resulting /// integer. /// /// # Examples /// /// ```rust /// let n = 0x0123456789ABCDEFu64; /// let m = 0xDEF0123456789ABCu64; /// /// assert_eq!(n.rotate_right(12), m); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn rotate_right(self, n: u32) -> $T { (self as $UnsignedT).rotate_right(n) as $T } /// Reverses the byte order of the integer. /// /// # Examples /// /// ```rust /// let n = 0x0123456789ABCDEFu64; /// let m = 0xEFCDAB8967452301u64; /// /// assert_eq!(n.swap_bytes(), m); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn swap_bytes(self) -> $T { (self as $UnsignedT).swap_bytes() as $T } /// Converts an integer from big endian to the target's endianness. /// /// On big endian this is a no-op. On little endian the bytes are /// swapped. /// /// # Examples /// /// ```rust /// let n = 0x0123456789ABCDEFu64; /// /// if cfg!(target_endian = "big") { /// assert_eq!(u64::from_be(n), n) /// } else { /// assert_eq!(u64::from_be(n), n.swap_bytes()) /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn from_be(x: $T) -> $T { if cfg!(target_endian = "big") { x } else { x.swap_bytes() } } /// Converts an integer from little endian to the target's endianness. /// /// On little endian this is a no-op. On big endian the bytes are /// swapped. /// /// # Examples /// /// ```rust /// let n = 0x0123456789ABCDEFu64; /// /// if cfg!(target_endian = "little") { /// assert_eq!(u64::from_le(n), n) /// } else { /// assert_eq!(u64::from_le(n), n.swap_bytes()) /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn from_le(x: $T) -> $T { if cfg!(target_endian = "little") { x } else { x.swap_bytes() } } /// Converts `self` to big endian from the target's endianness. /// /// On big endian this is a no-op. On little endian the bytes are /// swapped. /// /// # Examples /// /// ```rust /// let n = 0x0123456789ABCDEFu64; /// /// if cfg!(target_endian = "big") { /// assert_eq!(n.to_be(), n) /// } else { /// assert_eq!(n.to_be(), n.swap_bytes()) /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn to_be(self) -> $T { // or not to be? if cfg!(target_endian = "big") { self } else { self.swap_bytes() } } /// Converts `self` to little endian from the target's endianness. /// /// On little endian this is a no-op. On big endian the bytes are /// swapped. /// /// # Examples /// /// ```rust /// let n = 0x0123456789ABCDEFu64; /// /// if cfg!(target_endian = "little") { /// assert_eq!(n.to_le(), n) /// } else { /// assert_eq!(n.to_le(), n.swap_bytes()) /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn to_le(self) -> $T { if cfg!(target_endian = "little") { self } else { self.swap_bytes() } } /// Checked integer addition. Computes `self + other`, returning `None` /// if overflow occurred. /// /// # Examples /// /// ```rust /// assert_eq!(5u16.checked_add(65530), Some(65535)); /// assert_eq!(6u16.checked_add(65530), None); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn checked_add(self, other: $T) -> Option<$T> { checked_op!($T, $ActualT, $add_with_overflow, self, other) } /// Checked integer subtraction. Computes `self - other`, returning /// `None` if underflow occurred. /// /// # Examples /// /// ```rust /// assert_eq!((-127i8).checked_sub(1), Some(-128)); /// assert_eq!((-128i8).checked_sub(1), None); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn checked_sub(self, other: $T) -> Option<$T> { checked_op!($T, $ActualT, $sub_with_overflow, self, other) } /// Checked integer multiplication. Computes `self * other`, returning /// `None` if underflow or overflow occurred. /// /// # Examples /// /// ```rust /// assert_eq!(5u8.checked_mul(51), Some(255)); /// assert_eq!(5u8.checked_mul(52), None); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn checked_mul(self, other: $T) -> Option<$T> { checked_op!($T, $ActualT, $mul_with_overflow, self, other) } /// Checked integer division. Computes `self / other`, returning `None` /// if `other == 0` or the operation results in underflow or overflow. /// /// # Examples /// /// ```rust /// assert_eq!((-127i8).checked_div(-1), Some(127)); /// assert_eq!((-128i8).checked_div(-1), None); /// assert_eq!((1i8).checked_div(0), None); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn checked_div(self, v: $T) -> Option<$T> { match v { 0 => None, -1 if self == <$T>::min_value() => None, v => Some(self / v), } } /// Saturating integer addition. Computes `self + other`, saturating at /// the numeric bounds instead of overflowing. #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn saturating_add(self, other: $T) -> $T { match self.checked_add(other) { Some(x) => x, None if other >= <$T as Zero>::zero() => <$T>::max_value(), None => <$T>::min_value(), } } /// Saturating integer subtraction. Computes `self - other`, saturating /// at the numeric bounds instead of overflowing. #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn saturating_sub(self, other: $T) -> $T { match self.checked_sub(other) { Some(x) => x, None if other >= <$T as Zero>::zero() => <$T>::min_value(), None => <$T>::max_value(), } } /// Wrapping (modular) addition. Computes `self + other`, /// wrapping around at the boundary of the type. #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn wrapping_add(self, rhs: $T) -> $T { unsafe { intrinsics::overflowing_add(self, rhs) } } /// Wrapping (modular) subtraction. Computes `self - other`, /// wrapping around at the boundary of the type. #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn wrapping_sub(self, rhs: $T) -> $T { unsafe { intrinsics::overflowing_sub(self, rhs) } } /// Wrapping (modular) multiplication. Computes `self * /// other`, wrapping around at the boundary of the type. #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn wrapping_mul(self, rhs: $T) -> $T { unsafe { intrinsics::overflowing_mul(self, rhs) } } /// Wrapping (modular) division. Computes `floor(self / other)`, /// wrapping around at the boundary of the type. /// /// The only case where such wrapping can occur is when one /// divides `MIN / -1` on a signed type (where `MIN` is the /// negative minimal value for the type); this is equivalent /// to `-MIN`, a positive value that is too large to represent /// in the type. In such a case, this function returns `MIN` /// itself.. #[unstable(feature = "core", since = "1.0.0")] #[inline(always)] pub fn wrapping_div(self, rhs: $T) -> $T { self.overflowing_div(rhs).0 } /// Wrapping (modular) remainder. Computes `self % other`, /// wrapping around at the boundary of the type. /// /// Such wrap-around never actually occurs mathematically; /// implementation artifacts make `x % y` illegal for `MIN / /// -1` on a signed type illegal (where `MIN` is the negative /// minimal value). In such a case, this function returns `0`. #[unstable(feature = "core", since = "1.0.0")] #[inline(always)] pub fn wrapping_rem(self, rhs: $T) -> $T { self.overflowing_rem(rhs).0 } /// Wrapping (modular) negation. Computes `-self`, /// wrapping around at the boundary of the type. /// /// The only case where such wrapping can occur is when one /// negates `MIN` on a signed type (where `MIN` is the /// negative minimal value for the type); this is a positive /// value that is too large to represent in the type. In such /// a case, this function returns `MIN` itself. #[unstable(feature = "core", since = "1.0.0")] #[inline(always)] pub fn wrapping_neg(self) -> $T { self.overflowing_neg().0 } /// Panic-free bitwise shift-left; yields `self << mask(rhs)`, /// where `mask` removes any high-order bits of `rhs` that /// would cause the shift to exceed the bitwidth of the type. #[unstable(feature = "core", since = "1.0.0")] #[inline(always)] pub fn wrapping_shl(self, rhs: u32) -> $T { self.overflowing_shl(rhs).0 } /// Panic-free bitwise shift-left; yields `self >> mask(rhs)`, /// where `mask` removes any high-order bits of `rhs` that /// would cause the shift to exceed the bitwidth of the type. #[unstable(feature = "core", since = "1.0.0")] #[inline(always)] pub fn wrapping_shr(self, rhs: u32) -> $T { self.overflowing_shr(rhs).0 } /// Raises self to the power of `exp`, using exponentiation by squaring. /// /// # Examples /// /// ``` /// let x: i32 = 2; // or any other integer type /// /// assert_eq!(x.pow(4), 16); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn pow(self, mut exp: u32) -> $T { let mut base = self; let mut acc = <$T as One>::one(); let mut prev_base = self; let mut base_oflo = false; while exp > 0 { if (exp & 1) == 1 { if base_oflo { // ensure overflow occurs in the same manner it // would have otherwise (i.e. signal any exception // it would have otherwise). acc = acc * (prev_base * prev_base); } else { acc = acc * base; } } prev_base = base; let (new_base, new_base_oflo) = base.overflowing_mul(base); base = new_base; base_oflo = new_base_oflo; exp /= 2; } acc } /// Computes the absolute value of `self`. /// /// # Overflow behavior /// /// The absolute value of `i32::min_value()` cannot be represented as an /// `i32`, and attempting to calculate it will cause an overflow. This /// means that code in debug mode will trigger a panic on this case and /// optimized code will return `i32::min_value()` without a panic. #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn abs(self) -> $T { if self.is_negative() { // Note that the #[inline] above means that the overflow // semantics of this negation depend on the crate we're being // inlined into. -self } else { self } } /// Returns a number representing sign of `self`. /// /// - `0` if the number is zero /// - `1` if the number is positive /// - `-1` if the number is negative #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn signum(self) -> $T { match self { n if n > 0 => 1, 0 => 0, _ => -1, } } /// Returns `true` if `self` is positive and `false` if the number /// is zero or negative. #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn is_positive(self) -> bool { self > 0 } /// Returns `true` if `self` is negative and `false` if the number /// is zero or positive. #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn is_negative(self) -> bool { self < 0 } } } #[lang = "i8"] impl i8 { int_impl! { i8 = i8, u8, 8, intrinsics::i8_add_with_overflow, intrinsics::i8_sub_with_overflow, intrinsics::i8_mul_with_overflow } } #[lang = "i16"] impl i16 { int_impl! { i16 = i16, u16, 16, intrinsics::i16_add_with_overflow, intrinsics::i16_sub_with_overflow, intrinsics::i16_mul_with_overflow } } #[lang = "i32"] impl i32 { int_impl! { i32 = i32, u32, 32, intrinsics::i32_add_with_overflow, intrinsics::i32_sub_with_overflow, intrinsics::i32_mul_with_overflow } } #[lang = "i64"] impl i64 { int_impl! { i64 = i64, u64, 64, intrinsics::i64_add_with_overflow, intrinsics::i64_sub_with_overflow, intrinsics::i64_mul_with_overflow } } #[cfg(target_pointer_width = "32")] #[lang = "isize"] impl isize { int_impl! { isize = i32, u32, 32, intrinsics::i32_add_with_overflow, intrinsics::i32_sub_with_overflow, intrinsics::i32_mul_with_overflow } } #[cfg(target_pointer_width = "64")] #[lang = "isize"] impl isize { int_impl! { isize = i64, u64, 64, intrinsics::i64_add_with_overflow, intrinsics::i64_sub_with_overflow, intrinsics::i64_mul_with_overflow } } // `Int` + `UnsignedInt` implemented for signed integers macro_rules! uint_impl { ($T:ty = $ActualT:ty, $BITS:expr, $ctpop:path, $ctlz:path, $cttz:path, $bswap:path, $add_with_overflow:path, $sub_with_overflow:path, $mul_with_overflow:path) => { /// Returns the smallest value that can be represented by this integer type. #[stable(feature = "rust1", since = "1.0.0")] pub fn min_value() -> $T { 0 } /// Returns the largest value that can be represented by this integer type. #[stable(feature = "rust1", since = "1.0.0")] pub fn max_value() -> $T { !0 } /// Converts a string slice in a given base to an integer. /// /// Leading and trailing whitespace represent an error. /// /// # Arguments /// /// * src - A string slice /// * radix - The base to use. Must lie in the range [2 .. 36] /// /// # Return value /// /// `Err(ParseIntError)` if the string did not represent a valid number. /// Otherwise, `Ok(n)` where `n` is the integer represented by `src`. #[stable(feature = "rust1", since = "1.0.0")] #[allow(deprecated)] pub fn from_str_radix(src: &str, radix: u32) -> Result<$T, ParseIntError> { from_str_radix(src, radix) } /// Returns the number of ones in the binary representation of `self`. /// /// # Examples /// /// ```rust /// let n = 0b01001100u8; /// /// assert_eq!(n.count_ones(), 3); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn count_ones(self) -> u32 { unsafe { $ctpop(self as $ActualT) as u32 } } /// Returns the number of zeros in the binary representation of `self`. /// /// # Examples /// /// ```rust /// let n = 0b01001100u8; /// /// assert_eq!(n.count_zeros(), 5); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn count_zeros(self) -> u32 { (!self).count_ones() } /// Returns the number of leading zeros in the binary representation /// of `self`. /// /// # Examples /// /// ```rust /// let n = 0b0101000u16; /// /// assert_eq!(n.leading_zeros(), 10); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn leading_zeros(self) -> u32 { unsafe { $ctlz(self as $ActualT) as u32 } } /// Returns the number of trailing zeros in the binary representation /// of `self`. /// /// # Examples /// /// ```rust /// let n = 0b0101000u16; /// /// assert_eq!(n.trailing_zeros(), 3); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn trailing_zeros(self) -> u32 { // As of LLVM 3.6 the codegen for the zero-safe cttz8 intrinsic // emits two conditional moves on x86_64. By promoting the value to // u16 and setting bit 8, we get better code without any conditional // operations. // FIXME: There's a LLVM patch (http://reviews.llvm.org/D9284) // pending, remove this workaround once LLVM generates better code // for cttz8. unsafe { if $BITS == 8 { intrinsics::cttz16(self as u16 | 0x100) as u32 } else { $cttz(self as $ActualT) as u32 } } } /// Shifts the bits to the left by a specified amount, `n`, /// wrapping the truncated bits to the end of the resulting integer. /// /// # Examples /// /// ```rust /// let n = 0x0123456789ABCDEFu64; /// let m = 0x3456789ABCDEF012u64; /// /// assert_eq!(n.rotate_left(12), m); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn rotate_left(self, n: u32) -> $T { // Protect against undefined behaviour for over-long bit shifts let n = n % $BITS; (self << n) | (self >> (($BITS - n) % $BITS)) } /// Shifts the bits to the right by a specified amount, `n`, /// wrapping the truncated bits to the beginning of the resulting /// integer. /// /// # Examples /// /// ```rust /// let n = 0x0123456789ABCDEFu64; /// let m = 0xDEF0123456789ABCu64; /// /// assert_eq!(n.rotate_right(12), m); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn rotate_right(self, n: u32) -> $T { // Protect against undefined behaviour for over-long bit shifts let n = n % $BITS; (self >> n) | (self << (($BITS - n) % $BITS)) } /// Reverses the byte order of the integer. /// /// # Examples /// /// ```rust /// let n = 0x0123456789ABCDEFu64; /// let m = 0xEFCDAB8967452301u64; /// /// assert_eq!(n.swap_bytes(), m); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn swap_bytes(self) -> $T { unsafe { $bswap(self as $ActualT) as $T } } /// Converts an integer from big endian to the target's endianness. /// /// On big endian this is a no-op. On little endian the bytes are /// swapped. /// /// # Examples /// /// ```rust /// let n = 0x0123456789ABCDEFu64; /// /// if cfg!(target_endian = "big") { /// assert_eq!(u64::from_be(n), n) /// } else { /// assert_eq!(u64::from_be(n), n.swap_bytes()) /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn from_be(x: $T) -> $T { if cfg!(target_endian = "big") { x } else { x.swap_bytes() } } /// Converts an integer from little endian to the target's endianness. /// /// On little endian this is a no-op. On big endian the bytes are /// swapped. /// /// # Examples /// /// ```rust /// let n = 0x0123456789ABCDEFu64; /// /// if cfg!(target_endian = "little") { /// assert_eq!(u64::from_le(n), n) /// } else { /// assert_eq!(u64::from_le(n), n.swap_bytes()) /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn from_le(x: $T) -> $T { if cfg!(target_endian = "little") { x } else { x.swap_bytes() } } /// Converts `self` to big endian from the target's endianness. /// /// On big endian this is a no-op. On little endian the bytes are /// swapped. /// /// # Examples /// /// ```rust /// let n = 0x0123456789ABCDEFu64; /// /// if cfg!(target_endian = "big") { /// assert_eq!(n.to_be(), n) /// } else { /// assert_eq!(n.to_be(), n.swap_bytes()) /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn to_be(self) -> $T { // or not to be? if cfg!(target_endian = "big") { self } else { self.swap_bytes() } } /// Converts `self` to little endian from the target's endianness. /// /// On little endian this is a no-op. On big endian the bytes are /// swapped. /// /// # Examples /// /// ```rust /// let n = 0x0123456789ABCDEFu64; /// /// if cfg!(target_endian = "little") { /// assert_eq!(n.to_le(), n) /// } else { /// assert_eq!(n.to_le(), n.swap_bytes()) /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn to_le(self) -> $T { if cfg!(target_endian = "little") { self } else { self.swap_bytes() } } /// Checked integer addition. Computes `self + other`, returning `None` /// if overflow occurred. /// /// # Examples /// /// ```rust /// assert_eq!(5u16.checked_add(65530), Some(65535)); /// assert_eq!(6u16.checked_add(65530), None); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn checked_add(self, other: $T) -> Option<$T> { checked_op!($T, $ActualT, $add_with_overflow, self, other) } /// Checked integer subtraction. Computes `self - other`, returning /// `None` if underflow occurred. /// /// # Examples /// /// ```rust /// assert_eq!((-127i8).checked_sub(1), Some(-128)); /// assert_eq!((-128i8).checked_sub(1), None); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn checked_sub(self, other: $T) -> Option<$T> { checked_op!($T, $ActualT, $sub_with_overflow, self, other) } /// Checked integer multiplication. Computes `self * other`, returning /// `None` if underflow or overflow occurred. /// /// # Examples /// /// ```rust /// assert_eq!(5u8.checked_mul(51), Some(255)); /// assert_eq!(5u8.checked_mul(52), None); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn checked_mul(self, other: $T) -> Option<$T> { checked_op!($T, $ActualT, $mul_with_overflow, self, other) } /// Checked integer division. Computes `self / other`, returning `None` /// if `other == 0` or the operation results in underflow or overflow. /// /// # Examples /// /// ```rust /// assert_eq!((-127i8).checked_div(-1), Some(127)); /// assert_eq!((-128i8).checked_div(-1), None); /// assert_eq!((1i8).checked_div(0), None); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn checked_div(self, v: $T) -> Option<$T> { match v { 0 => None, v => Some(self / v), } } /// Saturating integer addition. Computes `self + other`, saturating at /// the numeric bounds instead of overflowing. #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn saturating_add(self, other: $T) -> $T { match self.checked_add(other) { Some(x) => x, None if other >= <$T as Zero>::zero() => <$T>::max_value(), None => <$T>::min_value(), } } /// Saturating integer subtraction. Computes `self - other`, saturating /// at the numeric bounds instead of overflowing. #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn saturating_sub(self, other: $T) -> $T { match self.checked_sub(other) { Some(x) => x, None if other >= <$T as Zero>::zero() => <$T>::min_value(), None => <$T>::max_value(), } } /// Wrapping (modular) addition. Computes `self + other`, /// wrapping around at the boundary of the type. #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn wrapping_add(self, rhs: $T) -> $T { unsafe { intrinsics::overflowing_add(self, rhs) } } /// Wrapping (modular) subtraction. Computes `self - other`, /// wrapping around at the boundary of the type. #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn wrapping_sub(self, rhs: $T) -> $T { unsafe { intrinsics::overflowing_sub(self, rhs) } } /// Wrapping (modular) multiplication. Computes `self * /// other`, wrapping around at the boundary of the type. #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn wrapping_mul(self, rhs: $T) -> $T { unsafe { intrinsics::overflowing_mul(self, rhs) } } /// Wrapping (modular) division. Computes `floor(self / other)`, /// wrapping around at the boundary of the type. /// /// The only case where such wrapping can occur is when one /// divides `MIN / -1` on a signed type (where `MIN` is the /// negative minimal value for the type); this is equivalent /// to `-MIN`, a positive value that is too large to represent /// in the type. In such a case, this function returns `MIN` /// itself.. #[unstable(feature = "core", since = "1.0.0")] #[inline(always)] pub fn wrapping_div(self, rhs: $T) -> $T { self.overflowing_div(rhs).0 } /// Wrapping (modular) remainder. Computes `self % other`, /// wrapping around at the boundary of the type. /// /// Such wrap-around never actually occurs mathematically; /// implementation artifacts make `x % y` illegal for `MIN / /// -1` on a signed type illegal (where `MIN` is the negative /// minimal value). In such a case, this function returns `0`. #[unstable(feature = "core", since = "1.0.0")] #[inline(always)] pub fn wrapping_rem(self, rhs: $T) -> $T { self.overflowing_rem(rhs).0 } /// Wrapping (modular) negation. Computes `-self`, /// wrapping around at the boundary of the type. /// /// The only case where such wrapping can occur is when one /// negates `MIN` on a signed type (where `MIN` is the /// negative minimal value for the type); this is a positive /// value that is too large to represent in the type. In such /// a case, this function returns `MIN` itself. #[unstable(feature = "core", since = "1.0.0")] #[inline(always)] pub fn wrapping_neg(self) -> $T { self.overflowing_neg().0 } /// Panic-free bitwise shift-left; yields `self << mask(rhs)`, /// where `mask` removes any high-order bits of `rhs` that /// would cause the shift to exceed the bitwidth of the type. #[unstable(feature = "core", since = "1.0.0")] #[inline(always)] pub fn wrapping_shl(self, rhs: u32) -> $T { self.overflowing_shl(rhs).0 } /// Panic-free bitwise shift-left; yields `self >> mask(rhs)`, /// where `mask` removes any high-order bits of `rhs` that /// would cause the shift to exceed the bitwidth of the type. #[unstable(feature = "core", since = "1.0.0")] #[inline(always)] pub fn wrapping_shr(self, rhs: u32) -> $T { self.overflowing_shr(rhs).0 } /// Raises self to the power of `exp`, using exponentiation by squaring. /// /// # Examples /// /// ```rust /// assert_eq!(2i32.pow(4), 16); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn pow(self, mut exp: u32) -> $T { let mut base = self; let mut acc = <$T as One>::one(); let mut prev_base = self; let mut base_oflo = false; while exp > 0 { if (exp & 1) == 1 { if base_oflo { // ensure overflow occurs in the same manner it // would have otherwise (i.e. signal any exception // it would have otherwise). acc = acc * (prev_base * prev_base); } else { acc = acc * base; } } prev_base = base; let (new_base, new_base_oflo) = base.overflowing_mul(base); base = new_base; base_oflo = new_base_oflo; exp /= 2; } acc } /// Returns `true` iff `self == 2^k` for some `k`. #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn is_power_of_two(self) -> bool { (self.wrapping_sub(<$T as One>::one())) & self == <$T as Zero>::zero() && !(self == <$T as Zero>::zero()) } /// Returns the smallest power of two greater than or equal to `self`. /// Unspecified behavior on overflow. #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn next_power_of_two(self) -> $T { let bits = size_of::<$T>() * 8; let one: $T = <$T as One>::one(); one << ((bits - self.wrapping_sub(one).leading_zeros() as usize) % bits) } /// Returns the smallest power of two greater than or equal to `n`. If /// the next power of two is greater than the type's maximum value, /// `None` is returned, otherwise the power of two is wrapped in `Some`. #[stable(feature = "rust1", since = "1.0.0")] pub fn checked_next_power_of_two(self) -> Option<$T> { let npot = self.next_power_of_two(); if npot >= self { Some(npot) } else { None } } } } #[lang = "u8"] impl u8 { uint_impl! { u8 = u8, 8, intrinsics::ctpop8, intrinsics::ctlz8, intrinsics::cttz8, bswap8, intrinsics::u8_add_with_overflow, intrinsics::u8_sub_with_overflow, intrinsics::u8_mul_with_overflow } } #[lang = "u16"] impl u16 { uint_impl! { u16 = u16, 16, intrinsics::ctpop16, intrinsics::ctlz16, intrinsics::cttz16, intrinsics::bswap16, intrinsics::u16_add_with_overflow, intrinsics::u16_sub_with_overflow, intrinsics::u16_mul_with_overflow } } #[lang = "u32"] impl u32 { uint_impl! { u32 = u32, 32, intrinsics::ctpop32, intrinsics::ctlz32, intrinsics::cttz32, intrinsics::bswap32, intrinsics::u32_add_with_overflow, intrinsics::u32_sub_with_overflow, intrinsics::u32_mul_with_overflow } } #[lang = "u64"] impl u64 { uint_impl! { u64 = u64, 64, intrinsics::ctpop64, intrinsics::ctlz64, intrinsics::cttz64, intrinsics::bswap64, intrinsics::u64_add_with_overflow, intrinsics::u64_sub_with_overflow, intrinsics::u64_mul_with_overflow } } #[cfg(target_pointer_width = "32")] #[lang = "usize"] impl usize { uint_impl! { usize = u32, 32, intrinsics::ctpop32, intrinsics::ctlz32, intrinsics::cttz32, intrinsics::bswap32, intrinsics::u32_add_with_overflow, intrinsics::u32_sub_with_overflow, intrinsics::u32_mul_with_overflow } } #[cfg(target_pointer_width = "64")] #[lang = "usize"] impl usize { uint_impl! { usize = u64, 64, intrinsics::ctpop64, intrinsics::ctlz64, intrinsics::cttz64, intrinsics::bswap64, intrinsics::u64_add_with_overflow, intrinsics::u64_sub_with_overflow, intrinsics::u64_mul_with_overflow } } /// Used for representing the classification of floating point numbers #[derive(Copy, Clone, PartialEq, Debug)] #[stable(feature = "rust1", since = "1.0.0")] pub enum FpCategory { /// "Not a Number", often obtained by dividing by zero #[stable(feature = "rust1", since = "1.0.0")] Nan, /// Positive or negative infinity #[stable(feature = "rust1", since = "1.0.0")] Infinite , /// Positive or negative zero #[stable(feature = "rust1", since = "1.0.0")] Zero, /// De-normalized floating point representation (less precise than `Normal`) #[stable(feature = "rust1", since = "1.0.0")] Subnormal, /// A regular floating point number #[stable(feature = "rust1", since = "1.0.0")] Normal, } /// A built-in floating point number. #[doc(hidden)] pub trait Float { /// Returns the NaN value. fn nan() -> Self; /// Returns the infinite value. fn infinity() -> Self; /// Returns the negative infinite value. fn neg_infinity() -> Self; /// Returns -0.0. fn neg_zero() -> Self; /// Returns 0.0. fn zero() -> Self; /// Returns 1.0. fn one() -> Self; /// Parses the string `s` with the radix `r` as a float. fn from_str_radix(s: &str, r: u32) -> Result; /// Returns true if this value is NaN and false otherwise. fn is_nan(self) -> bool; /// Returns true if this value is positive infinity or negative infinity and /// false otherwise. fn is_infinite(self) -> bool; /// Returns true if this number is neither infinite nor NaN. fn is_finite(self) -> bool; /// Returns true if this number is neither zero, infinite, denormal, or NaN. fn is_normal(self) -> bool; /// Returns the category that this number falls into. fn classify(self) -> FpCategory; /// Returns the mantissa, exponent and sign as integers, respectively. fn integer_decode(self) -> (u64, i16, i8); /// Return the largest integer less than or equal to a number. fn floor(self) -> Self; /// Return the smallest integer greater than or equal to a number. fn ceil(self) -> Self; /// Return the nearest integer to a number. Round half-way cases away from /// `0.0`. fn round(self) -> Self; /// Return the integer part of a number. fn trunc(self) -> Self; /// Return the fractional part of a number. fn fract(self) -> Self; /// Computes the absolute value of `self`. Returns `Float::nan()` if the /// number is `Float::nan()`. fn abs(self) -> Self; /// Returns a number that represents the sign of `self`. /// /// - `1.0` if the number is positive, `+0.0` or `Float::infinity()` /// - `-1.0` if the number is negative, `-0.0` or `Float::neg_infinity()` /// - `Float::nan()` if the number is `Float::nan()` fn signum(self) -> Self; /// Returns `true` if `self` is positive, including `+0.0` and /// `Float::infinity()`. fn is_positive(self) -> bool; /// Returns `true` if `self` is negative, including `-0.0` and /// `Float::neg_infinity()`. fn is_negative(self) -> bool; /// Fused multiply-add. Computes `(self * a) + b` with only one rounding /// error. This produces a more accurate result with better performance than /// a separate multiplication operation followed by an add. fn mul_add(self, a: Self, b: Self) -> Self; /// Take the reciprocal (inverse) of a number, `1/x`. fn recip(self) -> Self; /// Raise a number to an integer power. /// /// Using this function is generally faster than using `powf` fn powi(self, n: i32) -> Self; /// Raise a number to a floating point power. fn powf(self, n: Self) -> Self; /// Take the square root of a number. /// /// Returns NaN if `self` is a negative number. fn sqrt(self) -> Self; /// Take the reciprocal (inverse) square root of a number, `1/sqrt(x)`. fn rsqrt(self) -> Self; /// Returns `e^(self)`, (the exponential function). fn exp(self) -> Self; /// Returns 2 raised to the power of the number, `2^(self)`. fn exp2(self) -> Self; /// Returns the natural logarithm of the number. fn ln(self) -> Self; /// Returns the logarithm of the number with respect to an arbitrary base. fn log(self, base: Self) -> Self; /// Returns the base 2 logarithm of the number. fn log2(self) -> Self; /// Returns the base 10 logarithm of the number. fn log10(self) -> Self; /// Convert radians to degrees. fn to_degrees(self) -> Self; /// Convert degrees to radians. fn to_radians(self) -> Self; } macro_rules! from_str_float_impl { ($T:ident) => { #[stable(feature = "rust1", since = "1.0.0")] impl FromStr for $T { type Err = ParseFloatError; /// Converts a string in base 10 to a float. /// Accepts an optional decimal exponent. /// /// This function accepts strings such as /// /// * '3.14' /// * '+3.14', equivalent to '3.14' /// * '-3.14' /// * '2.5E10', or equivalently, '2.5e10' /// * '2.5E-10' /// * '.' (understood as 0) /// * '5.' /// * '.5', or, equivalently, '0.5' /// * '+inf', 'inf', '-inf', 'NaN' /// /// Leading and trailing whitespace represent an error. /// /// # Arguments /// /// * src - A string /// /// # Return value /// /// `Err(ParseFloatError)` if the string did not represent a valid /// number. Otherwise, `Ok(n)` where `n` is the floating-point /// number represented by `src`. #[inline] #[allow(deprecated)] fn from_str(src: &str) -> Result<$T, ParseFloatError> { $T::from_str_radix(src, 10) } } } } from_str_float_impl!(f32); from_str_float_impl!(f64); macro_rules! from_str_radix_int_impl { ($($T:ident)*) => {$( #[stable(feature = "rust1", since = "1.0.0")] #[allow(deprecated)] impl FromStr for $T { type Err = ParseIntError; fn from_str(src: &str) -> Result<$T, ParseIntError> { from_str_radix(src, 10) } } )*} } from_str_radix_int_impl! { isize i8 i16 i32 i64 usize u8 u16 u32 u64 } #[doc(hidden)] trait FromStrRadixHelper: PartialOrd + Copy { fn min_value() -> Self; fn from_u32(u: u32) -> Self; fn checked_mul(&self, other: u32) -> Option; fn checked_sub(&self, other: u32) -> Option; fn checked_add(&self, other: u32) -> Option; } macro_rules! doit { ($($t:ident)*) => ($(impl FromStrRadixHelper for $t { fn min_value() -> Self { <$t>::min_value() } fn from_u32(u: u32) -> Self { u as $t } fn checked_mul(&self, other: u32) -> Option { <$t>::checked_mul(*self, other as $t) } fn checked_sub(&self, other: u32) -> Option { <$t>::checked_sub(*self, other as $t) } fn checked_add(&self, other: u32) -> Option { <$t>::checked_add(*self, other as $t) } })*) } doit! { i8 i16 i32 i64 isize u8 u16 u32 u64 usize } fn from_str_radix(src: &str, radix: u32) -> Result { use self::IntErrorKind::*; use self::ParseIntError as PIE; assert!(radix >= 2 && radix <= 36, "from_str_radix_int: must lie in the range `[2, 36]` - found {}", radix); let is_signed_ty = T::from_u32(0) > T::min_value(); match src.slice_shift_char() { Some(('-', "")) => Err(PIE { kind: Empty }), Some(('-', src)) if is_signed_ty => { // The number is negative let mut result = T::from_u32(0); for c in src.chars() { let x = match c.to_digit(radix) { Some(x) => x, None => return Err(PIE { kind: InvalidDigit }), }; result = match result.checked_mul(radix) { Some(result) => result, None => return Err(PIE { kind: Underflow }), }; result = match result.checked_sub(x) { Some(result) => result, None => return Err(PIE { kind: Underflow }), }; } Ok(result) }, Some((_, _)) => { // The number is signed let mut result = T::from_u32(0); for c in src.chars() { let x = match c.to_digit(radix) { Some(x) => x, None => return Err(PIE { kind: InvalidDigit }), }; result = match result.checked_mul(radix) { Some(result) => result, None => return Err(PIE { kind: Overflow }), }; result = match result.checked_add(x) { Some(result) => result, None => return Err(PIE { kind: Overflow }), }; } Ok(result) }, None => Err(ParseIntError { kind: Empty }), } } /// An error which can be returned when parsing an integer. #[derive(Debug, Clone, PartialEq)] #[stable(feature = "rust1", since = "1.0.0")] pub struct ParseIntError { kind: IntErrorKind } #[derive(Debug, Clone, PartialEq)] enum IntErrorKind { Empty, InvalidDigit, Overflow, Underflow, } impl ParseIntError { #[unstable(feature = "core", reason = "available through Error trait")] pub fn description(&self) -> &str { match self.kind { IntErrorKind::Empty => "cannot parse integer from empty string", IntErrorKind::InvalidDigit => "invalid digit found in string", IntErrorKind::Overflow => "number too large to fit in target type", IntErrorKind::Underflow => "number too small to fit in target type", } } } #[stable(feature = "rust1", since = "1.0.0")] impl fmt::Display for ParseIntError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.description().fmt(f) } } /// An error which can be returned when parsing a float. #[derive(Debug, Clone, PartialEq)] #[stable(feature = "rust1", since = "1.0.0")] pub struct ParseFloatError { #[doc(hidden)] pub __kind: FloatErrorKind } #[derive(Debug, Clone, PartialEq)] pub enum FloatErrorKind { Empty, Invalid, } impl ParseFloatError { #[doc(hidden)] pub fn __description(&self) -> &str { match self.__kind { FloatErrorKind::Empty => "cannot parse float from empty string", FloatErrorKind::Invalid => "invalid float literal", } } } #[stable(feature = "rust1", since = "1.0.0")] impl fmt::Display for ParseFloatError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.__description().fmt(f) } }