// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Operations and constants for `uint` use num::NumCast; pub use self::inst::{ div_ceil, div_round, div_floor, iterate, next_power_of_two }; pub mod inst { use sys; use iter; pub type T = uint; #[allow(non_camel_case_types)] pub type T_SIGNED = int; #[cfg(target_arch = "x86")] #[cfg(target_arch = "arm")] #[cfg(target_arch = "mips")] pub static bits: uint = 32; #[cfg(target_arch = "x86_64")] pub static bits: uint = 64; /** * Divide two numbers, return the result, rounded up. * * # Arguments * * * x - an integer * * y - an integer distinct from 0u * * # Return value * * The smallest integer `q` such that `x/y <= q`. */ pub fn div_ceil(x: uint, y: uint) -> uint { let div = x / y; if x % y == 0u { div } else { div + 1u } } /** * Divide two numbers, return the result, rounded to the closest integer. * * # Arguments * * * x - an integer * * y - an integer distinct from 0u * * # Return value * * The integer `q` closest to `x/y`. */ pub fn div_round(x: uint, y: uint) -> uint { let div = x / y; if x % y * 2u < y { div } else { div + 1u } } /** * Divide two numbers, return the result, rounded down. * * Note: This is the same function as `div`. * * # Arguments * * * x - an integer * * y - an integer distinct from 0u * * # Return value * * The smallest integer `q` such that `x/y <= q`. This * is either `x/y` or `x/y + 1`. */ pub fn div_floor(x: uint, y: uint) -> uint { return x / y; } /** * Iterate over the range [`lo`..`hi`), or stop when requested * * # Arguments * * * lo - The integer at which to start the loop (included) * * hi - The integer at which to stop the loop (excluded) * * it - A block to execute with each consecutive integer of the range. * Return `true` to continue, `false` to stop. * * # Return value * * `true` If execution proceeded correctly, `false` if it was interrupted, * that is if `it` returned `false` at any point. */ pub fn iterate(lo: uint, hi: uint, it: &fn(uint) -> bool) -> bool { let mut i = lo; while i < hi { if (!it(i)) { return false; } i += 1u; } return true; } impl iter::Times for uint { #[inline(always)] /** * A convenience form for basic iteration. Given a uint `x`, * `for x.times { ... }` executes the given block x times. * * Equivalent to `for uint::range(0, x) |_| { ... }`. * * Not defined on all integer types to permit unambiguous * use with integer literals of inferred integer-type as * the self-value (eg. `for 100.times { ... }`). */ fn times(&self, it: &fn() -> bool) { let mut i = *self; while i > 0 { if !it() { break } i -= 1; } } } /// Returns the smallest power of 2 greater than or equal to `n` #[inline(always)] pub fn next_power_of_two(n: uint) -> uint { let halfbits: uint = sys::size_of::() * 4u; let mut tmp: uint = n - 1u; let mut shift: uint = 1u; while shift <= halfbits { tmp |= tmp >> shift; shift <<= 1u; } return tmp + 1u; } #[test] fn test_next_power_of_two() { assert!((next_power_of_two(0u) == 0u)); assert!((next_power_of_two(1u) == 1u)); assert!((next_power_of_two(2u) == 2u)); assert!((next_power_of_two(3u) == 4u)); assert!((next_power_of_two(4u) == 4u)); assert!((next_power_of_two(5u) == 8u)); assert!((next_power_of_two(6u) == 8u)); assert!((next_power_of_two(7u) == 8u)); assert!((next_power_of_two(8u) == 8u)); assert!((next_power_of_two(9u) == 16u)); assert!((next_power_of_two(10u) == 16u)); assert!((next_power_of_two(11u) == 16u)); assert!((next_power_of_two(12u) == 16u)); assert!((next_power_of_two(13u) == 16u)); assert!((next_power_of_two(14u) == 16u)); assert!((next_power_of_two(15u) == 16u)); assert!((next_power_of_two(16u) == 16u)); assert!((next_power_of_two(17u) == 32u)); assert!((next_power_of_two(18u) == 32u)); assert!((next_power_of_two(19u) == 32u)); assert!((next_power_of_two(20u) == 32u)); assert!((next_power_of_two(21u) == 32u)); assert!((next_power_of_two(22u) == 32u)); assert!((next_power_of_two(23u) == 32u)); assert!((next_power_of_two(24u) == 32u)); assert!((next_power_of_two(25u) == 32u)); assert!((next_power_of_two(26u) == 32u)); assert!((next_power_of_two(27u) == 32u)); assert!((next_power_of_two(28u) == 32u)); assert!((next_power_of_two(29u) == 32u)); assert!((next_power_of_two(30u) == 32u)); assert!((next_power_of_two(31u) == 32u)); assert!((next_power_of_two(32u) == 32u)); assert!((next_power_of_two(33u) == 64u)); assert!((next_power_of_two(34u) == 64u)); assert!((next_power_of_two(35u) == 64u)); assert!((next_power_of_two(36u) == 64u)); assert!((next_power_of_two(37u) == 64u)); assert!((next_power_of_two(38u) == 64u)); assert!((next_power_of_two(39u) == 64u)); } #[test] fn test_overflows() { use uint; assert!((uint::max_value > 0u)); assert!((uint::min_value <= 0u)); assert!((uint::min_value + uint::max_value + 1u == 0u)); } #[test] fn test_div() { assert!((div_floor(3u, 4u) == 0u)); assert!((div_ceil(3u, 4u) == 1u)); assert!((div_round(3u, 4u) == 1u)); } #[test] pub fn test_times() { use iter::Times; let ten = 10 as uint; let mut accum = 0; for ten.times { accum += 1; } assert!((accum == 10)); } } impl NumCast for uint { /** * Cast `n` to a `uint` */ #[inline(always)] fn from(n: N) -> uint { n.to_uint() } #[inline(always)] fn to_u8(&self) -> u8 { *self as u8 } #[inline(always)] fn to_u16(&self) -> u16 { *self as u16 } #[inline(always)] fn to_u32(&self) -> u32 { *self as u32 } #[inline(always)] fn to_u64(&self) -> u64 { *self as u64 } #[inline(always)] fn to_uint(&self) -> uint { *self } #[inline(always)] fn to_i8(&self) -> i8 { *self as i8 } #[inline(always)] fn to_i16(&self) -> i16 { *self as i16 } #[inline(always)] fn to_i32(&self) -> i32 { *self as i32 } #[inline(always)] fn to_i64(&self) -> i64 { *self as i64 } #[inline(always)] fn to_int(&self) -> int { *self as int } #[inline(always)] fn to_f32(&self) -> f32 { *self as f32 } #[inline(always)] fn to_f64(&self) -> f64 { *self as f64 } #[inline(always)] fn to_float(&self) -> float { *self as float } } #[test] fn test_numcast() { assert!((20u == 20u.to_uint())); assert!((20u8 == 20u.to_u8())); assert!((20u16 == 20u.to_u16())); assert!((20u32 == 20u.to_u32())); assert!((20u64 == 20u.to_u64())); assert!((20i == 20u.to_int())); assert!((20i8 == 20u.to_i8())); assert!((20i16 == 20u.to_i16())); assert!((20i32 == 20u.to_i32())); assert!((20i64 == 20u.to_i64())); assert!((20f == 20u.to_float())); assert!((20f32 == 20u.to_f32())); assert!((20f64 == 20u.to_f64())); assert!((20u == NumCast::from(20u))); assert!((20u == NumCast::from(20u8))); assert!((20u == NumCast::from(20u16))); assert!((20u == NumCast::from(20u32))); assert!((20u == NumCast::from(20u64))); assert!((20u == NumCast::from(20i))); assert!((20u == NumCast::from(20i8))); assert!((20u == NumCast::from(20i16))); assert!((20u == NumCast::from(20i32))); assert!((20u == NumCast::from(20i64))); assert!((20u == NumCast::from(20f))); assert!((20u == NumCast::from(20f32))); assert!((20u == NumCast::from(20f64))); assert!((20u == num::cast(20u))); assert!((20u == num::cast(20u8))); assert!((20u == num::cast(20u16))); assert!((20u == num::cast(20u32))); assert!((20u == num::cast(20u64))); assert!((20u == num::cast(20i))); assert!((20u == num::cast(20i8))); assert!((20u == num::cast(20i16))); assert!((20u == num::cast(20i32))); assert!((20u == num::cast(20i64))); assert!((20u == num::cast(20f))); assert!((20u == num::cast(20f32))); assert!((20u == num::cast(20f64))); }