// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! String manipulation //! //! For more details, see std::str #![stable(feature = "rust1", since = "1.0.0")] use self::pattern::Pattern; use self::pattern::{Searcher, ReverseSearcher, DoubleEndedSearcher}; use char::CharExt; use clone::Clone; use cmp::Eq; use convert::AsRef; use default::Default; use fmt; use iter::ExactSizeIterator; use iter::{Map, Iterator, DoubleEndedIterator}; use mem; use ops::{Fn, FnMut, FnOnce}; use option::Option::{self, None, Some}; use raw::{Repr, Slice}; use result::Result::{self, Ok, Err}; use slice::{self, SliceExt}; pub mod pattern; /// A trait to abstract the idea of creating a new instance of a type from a /// string. #[stable(feature = "rust1", since = "1.0.0")] pub trait FromStr { /// The associated error which can be returned from parsing. #[stable(feature = "rust1", since = "1.0.0")] type Err; /// Parses a string `s` to return a value of this type. /// /// If parsing succeeds, return the value inside `Ok`, otherwise /// when the string is ill-formatted return an error specific to the /// inside `Err`. The error type is specific to implementation of the trait. #[stable(feature = "rust1", since = "1.0.0")] fn from_str(s: &str) -> Result; } #[stable(feature = "rust1", since = "1.0.0")] impl FromStr for bool { type Err = ParseBoolError; /// Parse a `bool` from a string. /// /// Yields a `Result`, because `s` may or may not /// actually be parseable. /// /// # Examples /// /// ``` /// use std::str::FromStr; /// /// assert_eq!(FromStr::from_str("true"), Ok(true)); /// assert_eq!(FromStr::from_str("false"), Ok(false)); /// assert!(::from_str("not even a boolean").is_err()); /// ``` /// /// Note, in many cases, the `.parse()` method on `str` is more proper. /// /// ``` /// assert_eq!("true".parse(), Ok(true)); /// assert_eq!("false".parse(), Ok(false)); /// assert!("not even a boolean".parse::().is_err()); /// ``` #[inline] fn from_str(s: &str) -> Result { match s { "true" => Ok(true), "false" => Ok(false), _ => Err(ParseBoolError { _priv: () }), } } } /// An error returned when parsing a `bool` from a string fails. #[derive(Debug, Clone, PartialEq)] #[stable(feature = "rust1", since = "1.0.0")] pub struct ParseBoolError { _priv: () } #[stable(feature = "rust1", since = "1.0.0")] impl fmt::Display for ParseBoolError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { "provided string was not `true` or `false`".fmt(f) } } /* Section: Creating a string */ /// Errors which can occur when attempting to interpret a byte slice as a `str`. #[derive(Copy, Eq, PartialEq, Clone, Debug)] #[stable(feature = "rust1", since = "1.0.0")] pub struct Utf8Error { valid_up_to: usize, } impl Utf8Error { /// Returns the index in the given string up to which valid UTF-8 was /// verified. /// /// Starting at the index provided, but not necessarily at it precisely, an /// invalid UTF-8 encoding sequence was found. #[unstable(feature = "utf8_error", reason = "method just added")] pub fn valid_up_to(&self) -> usize { self.valid_up_to } } /// Converts a slice of bytes to a string slice without performing any /// allocations. /// /// Once the slice has been validated as utf-8, it is transmuted in-place and /// returned as a '&str' instead of a '&[u8]' /// /// # Failure /// /// Returns `Err` if the slice is not utf-8 with a description as to why the /// provided slice is not utf-8. #[stable(feature = "rust1", since = "1.0.0")] pub fn from_utf8(v: &[u8]) -> Result<&str, Utf8Error> { try!(run_utf8_validation_iterator(&mut v.iter())); Ok(unsafe { from_utf8_unchecked(v) }) } /// Converts a slice of bytes to a string slice without checking /// that the string contains valid UTF-8. #[inline(always)] #[stable(feature = "rust1", since = "1.0.0")] pub unsafe fn from_utf8_unchecked<'a>(v: &'a [u8]) -> &'a str { mem::transmute(v) } #[stable(feature = "rust1", since = "1.0.0")] impl fmt::Display for Utf8Error { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "invalid utf-8: invalid byte near index {}", self.valid_up_to) } } /* Section: Iterators */ /// Iterator for the char (representing *Unicode Scalar Values*) of a string /// /// Created with the method `.chars()`. #[derive(Clone)] #[stable(feature = "rust1", since = "1.0.0")] pub struct Chars<'a> { iter: slice::Iter<'a, u8> } /// Return the initial codepoint accumulator for the first byte. /// The first byte is special, only want bottom 5 bits for width 2, 4 bits /// for width 3, and 3 bits for width 4. #[inline] fn utf8_first_byte(byte: u8, width: u32) -> u32 { (byte & (0x7F >> width)) as u32 } /// Return the value of `ch` updated with continuation byte `byte`. #[inline] fn utf8_acc_cont_byte(ch: u32, byte: u8) -> u32 { (ch << 6) | (byte & CONT_MASK) as u32 } /// Checks whether the byte is a UTF-8 continuation byte (i.e. starts with the /// bits `10`). #[inline] fn utf8_is_cont_byte(byte: u8) -> bool { (byte & !CONT_MASK) == TAG_CONT_U8 } #[inline] fn unwrap_or_0(opt: Option<&u8>) -> u8 { match opt { Some(&byte) => byte, None => 0, } } /// Reads the next code point out of a byte iterator (assuming a /// UTF-8-like encoding). #[unstable(feature = "str_internals")] #[inline] pub fn next_code_point(bytes: &mut slice::Iter) -> Option { // Decode UTF-8 let x = match bytes.next() { None => return None, Some(&next_byte) if next_byte < 128 => return Some(next_byte as u32), Some(&next_byte) => next_byte, }; // Multibyte case follows // Decode from a byte combination out of: [[[x y] z] w] // NOTE: Performance is sensitive to the exact formulation here let init = utf8_first_byte(x, 2); let y = unwrap_or_0(bytes.next()); let mut ch = utf8_acc_cont_byte(init, y); if x >= 0xE0 { // [[x y z] w] case // 5th bit in 0xE0 .. 0xEF is always clear, so `init` is still valid let z = unwrap_or_0(bytes.next()); let y_z = utf8_acc_cont_byte((y & CONT_MASK) as u32, z); ch = init << 12 | y_z; if x >= 0xF0 { // [x y z w] case // use only the lower 3 bits of `init` let w = unwrap_or_0(bytes.next()); ch = (init & 7) << 18 | utf8_acc_cont_byte(y_z, w); } } Some(ch) } /// Reads the last code point out of a byte iterator (assuming a /// UTF-8-like encoding). #[inline] fn next_code_point_reverse(bytes: &mut slice::Iter) -> Option { // Decode UTF-8 let w = match bytes.next_back() { None => return None, Some(&next_byte) if next_byte < 128 => return Some(next_byte as u32), Some(&back_byte) => back_byte, }; // Multibyte case follows // Decode from a byte combination out of: [x [y [z w]]] let mut ch; let z = unwrap_or_0(bytes.next_back()); ch = utf8_first_byte(z, 2); if utf8_is_cont_byte(z) { let y = unwrap_or_0(bytes.next_back()); ch = utf8_first_byte(y, 3); if utf8_is_cont_byte(y) { let x = unwrap_or_0(bytes.next_back()); ch = utf8_first_byte(x, 4); ch = utf8_acc_cont_byte(ch, y); } ch = utf8_acc_cont_byte(ch, z); } ch = utf8_acc_cont_byte(ch, w); Some(ch) } #[stable(feature = "rust1", since = "1.0.0")] impl<'a> Iterator for Chars<'a> { type Item = char; #[inline] fn next(&mut self) -> Option { next_code_point(&mut self.iter).map(|ch| { // str invariant says `ch` is a valid Unicode Scalar Value unsafe { mem::transmute(ch) } }) } #[inline] fn size_hint(&self) -> (usize, Option) { let (len, _) = self.iter.size_hint(); // `(len + 3)` can't overflow, because we know that the `slice::Iter` // belongs to a slice in memory which has a maximum length of // `isize::MAX` (that's well below `usize::MAX`). ((len + 3) / 4, Some(len)) } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a> DoubleEndedIterator for Chars<'a> { #[inline] fn next_back(&mut self) -> Option { next_code_point_reverse(&mut self.iter).map(|ch| { // str invariant says `ch` is a valid Unicode Scalar Value unsafe { mem::transmute(ch) } }) } } /// Iterator for a string's characters and their byte offsets. #[derive(Clone)] #[stable(feature = "rust1", since = "1.0.0")] pub struct CharIndices<'a> { front_offset: usize, iter: Chars<'a>, } #[stable(feature = "rust1", since = "1.0.0")] impl<'a> Iterator for CharIndices<'a> { type Item = (usize, char); #[inline] fn next(&mut self) -> Option<(usize, char)> { let (pre_len, _) = self.iter.iter.size_hint(); match self.iter.next() { None => None, Some(ch) => { let index = self.front_offset; let (len, _) = self.iter.iter.size_hint(); self.front_offset += pre_len - len; Some((index, ch)) } } } #[inline] fn size_hint(&self) -> (usize, Option) { self.iter.size_hint() } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a> DoubleEndedIterator for CharIndices<'a> { #[inline] fn next_back(&mut self) -> Option<(usize, char)> { match self.iter.next_back() { None => None, Some(ch) => { let (len, _) = self.iter.iter.size_hint(); let index = self.front_offset + len; Some((index, ch)) } } } } /// External iterator for a string's bytes. /// Use with the `std::iter` module. /// /// Created with the method `.bytes()`. #[stable(feature = "rust1", since = "1.0.0")] #[derive(Clone)] pub struct Bytes<'a>(Map, BytesDeref>); /// A nameable, clonable fn type #[derive(Clone)] struct BytesDeref; impl<'a> Fn<(&'a u8,)> for BytesDeref { #[inline] extern "rust-call" fn call(&self, (ptr,): (&'a u8,)) -> u8 { *ptr } } impl<'a> FnMut<(&'a u8,)> for BytesDeref { #[inline] extern "rust-call" fn call_mut(&mut self, (ptr,): (&'a u8,)) -> u8 { Fn::call(&*self, (ptr,)) } } impl<'a> FnOnce<(&'a u8,)> for BytesDeref { type Output = u8; #[inline] extern "rust-call" fn call_once(self, (ptr,): (&'a u8,)) -> u8 { Fn::call(&self, (ptr,)) } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a> Iterator for Bytes<'a> { type Item = u8; #[inline] fn next(&mut self) -> Option { self.0.next() } #[inline] fn size_hint(&self) -> (usize, Option) { self.0.size_hint() } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a> DoubleEndedIterator for Bytes<'a> { #[inline] fn next_back(&mut self) -> Option { self.0.next_back() } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a> ExactSizeIterator for Bytes<'a> { #[inline] fn len(&self) -> usize { self.0.len() } } /// This macro generates a Clone impl for string pattern API /// wrapper types of the form X<'a, P> macro_rules! derive_pattern_clone { (clone $t:ident with |$s:ident| $e:expr) => { impl<'a, P: Pattern<'a>> Clone for $t<'a, P> where P::Searcher: Clone { fn clone(&self) -> Self { let $s = self; $e } } } } /// This macro generates two public iterator structs /// wrapping an private internal one that makes use of the `Pattern` API. /// /// For all patterns `P: Pattern<'a>` the following items will be /// generated (generics omitted): /// /// struct $forward_iterator($internal_iterator); /// struct $reverse_iterator($internal_iterator); /// /// impl Iterator for $forward_iterator /// { /* internal ends up calling Searcher::next_match() */ } /// /// impl DoubleEndedIterator for $forward_iterator /// where P::Searcher: DoubleEndedSearcher /// { /* internal ends up calling Searcher::next_match_back() */ } /// /// impl Iterator for $reverse_iterator /// where P::Searcher: ReverseSearcher /// { /* internal ends up calling Searcher::next_match_back() */ } /// /// impl DoubleEndedIterator for $reverse_iterator /// where P::Searcher: DoubleEndedSearcher /// { /* internal ends up calling Searcher::next_match() */ } /// /// The internal one is defined outside the macro, and has almost the same /// semantic as a DoubleEndedIterator by delegating to `pattern::Searcher` and /// `pattern::ReverseSearcher` for both forward and reverse iteration. /// /// "Almost", because a `Searcher` and a `ReverseSearcher` for a given /// `Pattern` might not return the same elements, so actually implementing /// `DoubleEndedIterator` for it would be incorrect. /// (See the docs in `str::pattern` for more details) /// /// However, the internal struct still represents a single ended iterator from /// either end, and depending on pattern is also a valid double ended iterator, /// so the two wrapper structs implement `Iterator` /// and `DoubleEndedIterator` depending on the concrete pattern type, leading /// to the complex impls seen above. macro_rules! generate_pattern_iterators { { // Forward iterator forward: $(#[$forward_iterator_attribute:meta])* struct $forward_iterator:ident; // Reverse iterator reverse: $(#[$reverse_iterator_attribute:meta])* struct $reverse_iterator:ident; // Stability of all generated items stability: $(#[$common_stability_attribute:meta])* // Internal almost-iterator that is being delegated to internal: $internal_iterator:ident yielding ($iterty:ty); // Kind of delgation - either single ended or double ended delegate $($t:tt)* } => { $(#[$forward_iterator_attribute])* $(#[$common_stability_attribute])* pub struct $forward_iterator<'a, P: Pattern<'a>>($internal_iterator<'a, P>); $(#[$common_stability_attribute])* impl<'a, P: Pattern<'a>> Iterator for $forward_iterator<'a, P> { type Item = $iterty; #[inline] fn next(&mut self) -> Option<$iterty> { self.0.next() } } $(#[$common_stability_attribute])* impl<'a, P: Pattern<'a>> Clone for $forward_iterator<'a, P> where P::Searcher: Clone { fn clone(&self) -> Self { $forward_iterator(self.0.clone()) } } $(#[$reverse_iterator_attribute])* $(#[$common_stability_attribute])* pub struct $reverse_iterator<'a, P: Pattern<'a>>($internal_iterator<'a, P>); $(#[$common_stability_attribute])* impl<'a, P: Pattern<'a>> Iterator for $reverse_iterator<'a, P> where P::Searcher: ReverseSearcher<'a> { type Item = $iterty; #[inline] fn next(&mut self) -> Option<$iterty> { self.0.next_back() } } $(#[$common_stability_attribute])* impl<'a, P: Pattern<'a>> Clone for $reverse_iterator<'a, P> where P::Searcher: Clone { fn clone(&self) -> Self { $reverse_iterator(self.0.clone()) } } generate_pattern_iterators!($($t)* with $(#[$common_stability_attribute])*, $forward_iterator, $reverse_iterator, $iterty); }; { double ended; with $(#[$common_stability_attribute:meta])*, $forward_iterator:ident, $reverse_iterator:ident, $iterty:ty } => { $(#[$common_stability_attribute])* impl<'a, P: Pattern<'a>> DoubleEndedIterator for $forward_iterator<'a, P> where P::Searcher: DoubleEndedSearcher<'a> { #[inline] fn next_back(&mut self) -> Option<$iterty> { self.0.next_back() } } $(#[$common_stability_attribute])* impl<'a, P: Pattern<'a>> DoubleEndedIterator for $reverse_iterator<'a, P> where P::Searcher: DoubleEndedSearcher<'a> { #[inline] fn next_back(&mut self) -> Option<$iterty> { self.0.next() } } }; { single ended; with $(#[$common_stability_attribute:meta])*, $forward_iterator:ident, $reverse_iterator:ident, $iterty:ty } => {} } derive_pattern_clone!{ clone SplitInternal with |s| SplitInternal { matcher: s.matcher.clone(), ..*s } } struct SplitInternal<'a, P: Pattern<'a>> { start: usize, end: usize, matcher: P::Searcher, allow_trailing_empty: bool, finished: bool, } impl<'a, P: Pattern<'a>> SplitInternal<'a, P> { #[inline] fn get_end(&mut self) -> Option<&'a str> { if !self.finished && (self.allow_trailing_empty || self.end - self.start > 0) { self.finished = true; unsafe { let string = self.matcher.haystack().slice_unchecked(self.start, self.end); Some(string) } } else { None } } #[inline] fn next(&mut self) -> Option<&'a str> { if self.finished { return None } let haystack = self.matcher.haystack(); match self.matcher.next_match() { Some((a, b)) => unsafe { let elt = haystack.slice_unchecked(self.start, a); self.start = b; Some(elt) }, None => self.get_end(), } } #[inline] fn next_back(&mut self) -> Option<&'a str> where P::Searcher: ReverseSearcher<'a> { if self.finished { return None } if !self.allow_trailing_empty { self.allow_trailing_empty = true; match self.next_back() { Some(elt) if !elt.is_empty() => return Some(elt), _ => if self.finished { return None } } } let haystack = self.matcher.haystack(); match self.matcher.next_match_back() { Some((a, b)) => unsafe { let elt = haystack.slice_unchecked(b, self.end); self.end = a; Some(elt) }, None => unsafe { self.finished = true; Some(haystack.slice_unchecked(self.start, self.end)) }, } } } generate_pattern_iterators! { forward: /// Created with the method `.split()`. struct Split; reverse: /// Created with the method `.rsplit()`. struct RSplit; stability: #[stable(feature = "rust1", since = "1.0.0")] internal: SplitInternal yielding (&'a str); delegate double ended; } generate_pattern_iterators! { forward: /// Created with the method `.split_terminator()`. struct SplitTerminator; reverse: /// Created with the method `.rsplit_terminator()`. struct RSplitTerminator; stability: #[stable(feature = "rust1", since = "1.0.0")] internal: SplitInternal yielding (&'a str); delegate double ended; } derive_pattern_clone!{ clone SplitNInternal with |s| SplitNInternal { iter: s.iter.clone(), ..*s } } struct SplitNInternal<'a, P: Pattern<'a>> { iter: SplitInternal<'a, P>, /// The number of splits remaining count: usize, } impl<'a, P: Pattern<'a>> SplitNInternal<'a, P> { #[inline] fn next(&mut self) -> Option<&'a str> { match self.count { 0 => None, 1 => { self.count = 0; self.iter.get_end() } _ => { self.count -= 1; self.iter.next() } } } #[inline] fn next_back(&mut self) -> Option<&'a str> where P::Searcher: ReverseSearcher<'a> { match self.count { 0 => None, 1 => { self.count = 0; self.iter.get_end() } _ => { self.count -= 1; self.iter.next_back() } } } } generate_pattern_iterators! { forward: /// Created with the method `.splitn()`. struct SplitN; reverse: /// Created with the method `.rsplitn()`. struct RSplitN; stability: #[stable(feature = "rust1", since = "1.0.0")] internal: SplitNInternal yielding (&'a str); delegate single ended; } derive_pattern_clone!{ clone MatchIndicesInternal with |s| MatchIndicesInternal(s.0.clone()) } struct MatchIndicesInternal<'a, P: Pattern<'a>>(P::Searcher); impl<'a, P: Pattern<'a>> MatchIndicesInternal<'a, P> { #[inline] fn next(&mut self) -> Option<(usize, usize)> { self.0.next_match() } #[inline] fn next_back(&mut self) -> Option<(usize, usize)> where P::Searcher: ReverseSearcher<'a> { self.0.next_match_back() } } generate_pattern_iterators! { forward: /// Created with the method `.match_indices()`. struct MatchIndices; reverse: /// Created with the method `.rmatch_indices()`. struct RMatchIndices; stability: #[unstable(feature = "str_match_indices", reason = "type may be removed or have its iterator impl changed")] internal: MatchIndicesInternal yielding ((usize, usize)); delegate double ended; } derive_pattern_clone!{ clone MatchesInternal with |s| MatchesInternal(s.0.clone()) } struct MatchesInternal<'a, P: Pattern<'a>>(P::Searcher); impl<'a, P: Pattern<'a>> MatchesInternal<'a, P> { #[inline] fn next(&mut self) -> Option<&'a str> { self.0.next_match().map(|(a, b)| unsafe { // Indices are known to be on utf8 boundaries self.0.haystack().slice_unchecked(a, b) }) } #[inline] fn next_back(&mut self) -> Option<&'a str> where P::Searcher: ReverseSearcher<'a> { self.0.next_match_back().map(|(a, b)| unsafe { // Indices are known to be on utf8 boundaries self.0.haystack().slice_unchecked(a, b) }) } } generate_pattern_iterators! { forward: /// Created with the method `.matches()`. struct Matches; reverse: /// Created with the method `.rmatches()`. struct RMatches; stability: #[stable(feature = "str_matches", since = "1.2.0")] internal: MatchesInternal yielding (&'a str); delegate double ended; } /// Created with the method `.lines()`. #[stable(feature = "rust1", since = "1.0.0")] #[derive(Clone)] pub struct Lines<'a>(SplitTerminator<'a, char>); #[stable(feature = "rust1", since = "1.0.0")] impl<'a> Iterator for Lines<'a> { type Item = &'a str; #[inline] fn next(&mut self) -> Option<&'a str> { self.0.next() } #[inline] fn size_hint(&self) -> (usize, Option) { self.0.size_hint() } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a> DoubleEndedIterator for Lines<'a> { #[inline] fn next_back(&mut self) -> Option<&'a str> { self.0.next_back() } } /// Created with the method `.lines_any()`. #[stable(feature = "rust1", since = "1.0.0")] #[derive(Clone)] pub struct LinesAny<'a>(Map, LinesAnyMap>); /// A nameable, clonable fn type #[derive(Clone)] struct LinesAnyMap; impl<'a> Fn<(&'a str,)> for LinesAnyMap { #[inline] extern "rust-call" fn call(&self, (line,): (&'a str,)) -> &'a str { let l = line.len(); if l > 0 && line.as_bytes()[l - 1] == b'\r' { &line[0 .. l - 1] } else { line } } } impl<'a> FnMut<(&'a str,)> for LinesAnyMap { #[inline] extern "rust-call" fn call_mut(&mut self, (line,): (&'a str,)) -> &'a str { Fn::call(&*self, (line,)) } } impl<'a> FnOnce<(&'a str,)> for LinesAnyMap { type Output = &'a str; #[inline] extern "rust-call" fn call_once(self, (line,): (&'a str,)) -> &'a str { Fn::call(&self, (line,)) } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a> Iterator for LinesAny<'a> { type Item = &'a str; #[inline] fn next(&mut self) -> Option<&'a str> { self.0.next() } #[inline] fn size_hint(&self) -> (usize, Option) { self.0.size_hint() } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a> DoubleEndedIterator for LinesAny<'a> { #[inline] fn next_back(&mut self) -> Option<&'a str> { self.0.next_back() } } /* Section: Comparing strings */ /// Bytewise slice equality /// NOTE: This function is (ab)used in rustc::middle::trans::_match /// to compare &[u8] byte slices that are not necessarily valid UTF-8. #[lang = "str_eq"] #[inline] fn eq_slice(a: &str, b: &str) -> bool { // NOTE: In theory n should be libc::size_t and not usize, but libc is not available here #[allow(improper_ctypes)] extern { fn memcmp(s1: *const i8, s2: *const i8, n: usize) -> i32; } a.len() == b.len() && unsafe { memcmp(a.as_ptr() as *const i8, b.as_ptr() as *const i8, a.len()) == 0 } } /* Section: Misc */ /// Walk through `iter` checking that it's a valid UTF-8 sequence, /// returning `true` in that case, or, if it is invalid, `false` with /// `iter` reset such that it is pointing at the first byte in the /// invalid sequence. #[inline(always)] fn run_utf8_validation_iterator(iter: &mut slice::Iter) -> Result<(), Utf8Error> { let whole = iter.as_slice(); loop { // save the current thing we're pointing at. let old = iter.clone(); // restore the iterator we had at the start of this codepoint. macro_rules! err { () => {{ *iter = old.clone(); return Err(Utf8Error { valid_up_to: whole.len() - iter.as_slice().len() }) }}} macro_rules! next { () => { match iter.next() { Some(a) => *a, // we needed data, but there was none: error! None => err!(), } }} let first = match iter.next() { Some(&b) => b, // we're at the end of the iterator and a codepoint // boundary at the same time, so this string is valid. None => return Ok(()) }; // ASCII characters are always valid, so only large // bytes need more examination. if first >= 128 { let w = UTF8_CHAR_WIDTH[first as usize]; let second = next!(); // 2-byte encoding is for codepoints \u{0080} to \u{07ff} // first C2 80 last DF BF // 3-byte encoding is for codepoints \u{0800} to \u{ffff} // first E0 A0 80 last EF BF BF // excluding surrogates codepoints \u{d800} to \u{dfff} // ED A0 80 to ED BF BF // 4-byte encoding is for codepoints \u{1000}0 to \u{10ff}ff // first F0 90 80 80 last F4 8F BF BF // // Use the UTF-8 syntax from the RFC // // https://tools.ietf.org/html/rfc3629 // UTF8-1 = %x00-7F // UTF8-2 = %xC2-DF UTF8-tail // UTF8-3 = %xE0 %xA0-BF UTF8-tail / %xE1-EC 2( UTF8-tail ) / // %xED %x80-9F UTF8-tail / %xEE-EF 2( UTF8-tail ) // UTF8-4 = %xF0 %x90-BF 2( UTF8-tail ) / %xF1-F3 3( UTF8-tail ) / // %xF4 %x80-8F 2( UTF8-tail ) match w { 2 => if second & !CONT_MASK != TAG_CONT_U8 {err!()}, 3 => { match (first, second, next!() & !CONT_MASK) { (0xE0 , 0xA0 ... 0xBF, TAG_CONT_U8) | (0xE1 ... 0xEC, 0x80 ... 0xBF, TAG_CONT_U8) | (0xED , 0x80 ... 0x9F, TAG_CONT_U8) | (0xEE ... 0xEF, 0x80 ... 0xBF, TAG_CONT_U8) => {} _ => err!() } } 4 => { match (first, second, next!() & !CONT_MASK, next!() & !CONT_MASK) { (0xF0 , 0x90 ... 0xBF, TAG_CONT_U8, TAG_CONT_U8) | (0xF1 ... 0xF3, 0x80 ... 0xBF, TAG_CONT_U8, TAG_CONT_U8) | (0xF4 , 0x80 ... 0x8F, TAG_CONT_U8, TAG_CONT_U8) => {} _ => err!() } } _ => err!() } } } } // https://tools.ietf.org/html/rfc3629 static UTF8_CHAR_WIDTH: [u8; 256] = [ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, // 0x1F 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, // 0x3F 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, // 0x5F 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, // 0x7F 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, // 0x9F 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, // 0xBF 0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, // 0xDF 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3, // 0xEF 4,4,4,4,4,0,0,0,0,0,0,0,0,0,0,0, // 0xFF ]; /// Struct that contains a `char` and the index of the first byte of /// the next `char` in a string. This can be used as a data structure /// for iterating over the UTF-8 bytes of a string. #[derive(Copy, Clone)] #[unstable(feature = "str_char", reason = "existence of this struct is uncertain as it is frequently \ able to be replaced with char.len_utf8() and/or \ char/char_indices iterators")] pub struct CharRange { /// Current `char` pub ch: char, /// Index of the first byte of the next `char` pub next: usize, } /// Mask of the value bits of a continuation byte const CONT_MASK: u8 = 0b0011_1111; /// Value of the tag bits (tag mask is !CONT_MASK) of a continuation byte const TAG_CONT_U8: u8 = 0b1000_0000; /* Section: Trait implementations */ mod traits { use cmp::{Ordering, Ord, PartialEq, PartialOrd, Eq}; use cmp::Ordering::{Less, Equal, Greater}; use iter::Iterator; use option::Option; use option::Option::Some; use ops; use str::{StrExt, eq_slice}; #[stable(feature = "rust1", since = "1.0.0")] impl Ord for str { #[inline] fn cmp(&self, other: &str) -> Ordering { for (s_b, o_b) in self.bytes().zip(other.bytes()) { match s_b.cmp(&o_b) { Greater => return Greater, Less => return Less, Equal => () } } self.len().cmp(&other.len()) } } #[stable(feature = "rust1", since = "1.0.0")] impl PartialEq for str { #[inline] fn eq(&self, other: &str) -> bool { eq_slice(self, other) } #[inline] fn ne(&self, other: &str) -> bool { !(*self).eq(other) } } #[stable(feature = "rust1", since = "1.0.0")] impl Eq for str {} #[stable(feature = "rust1", since = "1.0.0")] impl PartialOrd for str { #[inline] fn partial_cmp(&self, other: &str) -> Option { Some(self.cmp(other)) } } /// Returns a slice of the given string from the byte range /// [`begin`..`end`). /// /// This operation is `O(1)`. /// /// Panics when `begin` and `end` do not point to valid characters /// or point beyond the last character of the string. /// /// # Examples /// /// ``` /// let s = "Löwe 老虎 Léopard"; /// assert_eq!(&s[0 .. 1], "L"); /// /// assert_eq!(&s[1 .. 9], "öwe 老"); /// /// // these will panic: /// // byte 2 lies within `ö`: /// // &s[2 ..3]; /// /// // byte 8 lies within `老` /// // &s[1 .. 8]; /// /// // byte 100 is outside the string /// // &s[3 .. 100]; /// ``` #[stable(feature = "rust1", since = "1.0.0")] impl ops::Index> for str { type Output = str; #[inline] fn index(&self, index: ops::Range) -> &str { // is_char_boundary checks that the index is in [0, .len()] if index.start <= index.end && self.is_char_boundary(index.start) && self.is_char_boundary(index.end) { unsafe { self.slice_unchecked(index.start, index.end) } } else { super::slice_error_fail(self, index.start, index.end) } } } /// Returns a mutable slice of the given string from the byte range /// [`begin`..`end`). #[stable(feature = "derefmut_for_string", since = "1.2.0")] impl ops::IndexMut> for str { #[inline] fn index_mut(&mut self, index: ops::Range) -> &mut str { // is_char_boundary checks that the index is in [0, .len()] if index.start <= index.end && self.is_char_boundary(index.start) && self.is_char_boundary(index.end) { unsafe { self.slice_mut_unchecked(index.start, index.end) } } else { super::slice_error_fail(self, index.start, index.end) } } } /// Returns a slice of the string from the beginning to byte /// `end`. /// /// Equivalent to `self[0 .. end]`. /// /// Panics when `end` does not point to a valid character, or is /// out of bounds. #[stable(feature = "rust1", since = "1.0.0")] impl ops::Index> for str { type Output = str; #[inline] fn index(&self, index: ops::RangeTo) -> &str { // is_char_boundary checks that the index is in [0, .len()] if self.is_char_boundary(index.end) { unsafe { self.slice_unchecked(0, index.end) } } else { super::slice_error_fail(self, 0, index.end) } } } /// Returns a mutable slice of the string from the beginning to byte /// `end`. #[stable(feature = "derefmut_for_string", since = "1.2.0")] impl ops::IndexMut> for str { #[inline] fn index_mut(&mut self, index: ops::RangeTo) -> &mut str { // is_char_boundary checks that the index is in [0, .len()] if self.is_char_boundary(index.end) { unsafe { self.slice_mut_unchecked(0, index.end) } } else { super::slice_error_fail(self, 0, index.end) } } } /// Returns a slice of the string from `begin` to its end. /// /// Equivalent to `self[begin .. self.len()]`. /// /// Panics when `begin` does not point to a valid character, or is /// out of bounds. #[stable(feature = "rust1", since = "1.0.0")] impl ops::Index> for str { type Output = str; #[inline] fn index(&self, index: ops::RangeFrom) -> &str { // is_char_boundary checks that the index is in [0, .len()] if self.is_char_boundary(index.start) { unsafe { self.slice_unchecked(index.start, self.len()) } } else { super::slice_error_fail(self, index.start, self.len()) } } } /// Returns a slice of the string from `begin` to its end. #[stable(feature = "derefmut_for_string", since = "1.2.0")] impl ops::IndexMut> for str { #[inline] fn index_mut(&mut self, index: ops::RangeFrom) -> &mut str { // is_char_boundary checks that the index is in [0, .len()] if self.is_char_boundary(index.start) { let len = self.len(); unsafe { self.slice_mut_unchecked(index.start, len) } } else { super::slice_error_fail(self, index.start, self.len()) } } } #[stable(feature = "rust1", since = "1.0.0")] impl ops::Index for str { type Output = str; #[inline] fn index(&self, _index: ops::RangeFull) -> &str { self } } #[stable(feature = "derefmut_for_string", since = "1.2.0")] impl ops::IndexMut for str { #[inline] fn index_mut(&mut self, _index: ops::RangeFull) -> &mut str { self } } } /// Methods for string slices #[allow(missing_docs)] #[doc(hidden)] #[unstable(feature = "core_str_ext", reason = "stable interface provided by `impl str` in later crates")] pub trait StrExt { // NB there are no docs here are they're all located on the StrExt trait in // libcollections, not here. fn contains<'a, P: Pattern<'a>>(&'a self, pat: P) -> bool; fn contains_char<'a, P: Pattern<'a>>(&'a self, pat: P) -> bool; fn chars<'a>(&'a self) -> Chars<'a>; fn bytes<'a>(&'a self) -> Bytes<'a>; fn char_indices<'a>(&'a self) -> CharIndices<'a>; fn split<'a, P: Pattern<'a>>(&'a self, pat: P) -> Split<'a, P>; fn rsplit<'a, P: Pattern<'a>>(&'a self, pat: P) -> RSplit<'a, P> where P::Searcher: ReverseSearcher<'a>; fn splitn<'a, P: Pattern<'a>>(&'a self, count: usize, pat: P) -> SplitN<'a, P>; fn rsplitn<'a, P: Pattern<'a>>(&'a self, count: usize, pat: P) -> RSplitN<'a, P> where P::Searcher: ReverseSearcher<'a>; fn split_terminator<'a, P: Pattern<'a>>(&'a self, pat: P) -> SplitTerminator<'a, P>; fn rsplit_terminator<'a, P: Pattern<'a>>(&'a self, pat: P) -> RSplitTerminator<'a, P> where P::Searcher: ReverseSearcher<'a>; fn matches<'a, P: Pattern<'a>>(&'a self, pat: P) -> Matches<'a, P>; fn rmatches<'a, P: Pattern<'a>>(&'a self, pat: P) -> RMatches<'a, P> where P::Searcher: ReverseSearcher<'a>; fn match_indices<'a, P: Pattern<'a>>(&'a self, pat: P) -> MatchIndices<'a, P>; fn rmatch_indices<'a, P: Pattern<'a>>(&'a self, pat: P) -> RMatchIndices<'a, P> where P::Searcher: ReverseSearcher<'a>; fn lines<'a>(&'a self) -> Lines<'a>; fn lines_any<'a>(&'a self) -> LinesAny<'a>; fn char_len(&self) -> usize; fn slice_chars<'a>(&'a self, begin: usize, end: usize) -> &'a str; unsafe fn slice_unchecked<'a>(&'a self, begin: usize, end: usize) -> &'a str; unsafe fn slice_mut_unchecked<'a>(&'a mut self, begin: usize, end: usize) -> &'a mut str; fn starts_with<'a, P: Pattern<'a>>(&'a self, pat: P) -> bool; fn ends_with<'a, P: Pattern<'a>>(&'a self, pat: P) -> bool where P::Searcher: ReverseSearcher<'a>; fn trim_matches<'a, P: Pattern<'a>>(&'a self, pat: P) -> &'a str where P::Searcher: DoubleEndedSearcher<'a>; fn trim_left_matches<'a, P: Pattern<'a>>(&'a self, pat: P) -> &'a str; fn trim_right_matches<'a, P: Pattern<'a>>(&'a self, pat: P) -> &'a str where P::Searcher: ReverseSearcher<'a>; fn is_char_boundary(&self, index: usize) -> bool; fn char_range_at(&self, start: usize) -> CharRange; fn char_range_at_reverse(&self, start: usize) -> CharRange; fn char_at(&self, i: usize) -> char; fn char_at_reverse(&self, i: usize) -> char; fn as_bytes<'a>(&'a self) -> &'a [u8]; fn find<'a, P: Pattern<'a>>(&'a self, pat: P) -> Option; fn rfind<'a, P: Pattern<'a>>(&'a self, pat: P) -> Option where P::Searcher: ReverseSearcher<'a>; fn find_str<'a, P: Pattern<'a>>(&'a self, pat: P) -> Option; fn split_at(&self, mid: usize) -> (&str, &str); fn split_at_mut(&mut self, mid: usize) -> (&mut str, &mut str); fn slice_shift_char<'a>(&'a self) -> Option<(char, &'a str)>; fn subslice_offset(&self, inner: &str) -> usize; fn as_ptr(&self) -> *const u8; fn len(&self) -> usize; fn is_empty(&self) -> bool; fn parse(&self) -> Result; } #[inline(never)] fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! { assert!(begin <= end); panic!("index {} and/or {} in `{}` do not lie on character boundary", begin, end, s); } impl StrExt for str { #[inline] fn contains<'a, P: Pattern<'a>>(&'a self, pat: P) -> bool { pat.is_contained_in(self) } #[inline] fn contains_char<'a, P: Pattern<'a>>(&'a self, pat: P) -> bool { pat.is_contained_in(self) } #[inline] fn chars(&self) -> Chars { Chars{iter: self.as_bytes().iter()} } #[inline] fn bytes(&self) -> Bytes { Bytes(self.as_bytes().iter().map(BytesDeref)) } #[inline] fn char_indices(&self) -> CharIndices { CharIndices { front_offset: 0, iter: self.chars() } } #[inline] fn split<'a, P: Pattern<'a>>(&'a self, pat: P) -> Split<'a, P> { Split(SplitInternal { start: 0, end: self.len(), matcher: pat.into_searcher(self), allow_trailing_empty: true, finished: false, }) } #[inline] fn rsplit<'a, P: Pattern<'a>>(&'a self, pat: P) -> RSplit<'a, P> where P::Searcher: ReverseSearcher<'a> { RSplit(self.split(pat).0) } #[inline] fn splitn<'a, P: Pattern<'a>>(&'a self, count: usize, pat: P) -> SplitN<'a, P> { SplitN(SplitNInternal { iter: self.split(pat).0, count: count, }) } #[inline] fn rsplitn<'a, P: Pattern<'a>>(&'a self, count: usize, pat: P) -> RSplitN<'a, P> where P::Searcher: ReverseSearcher<'a> { RSplitN(self.splitn(count, pat).0) } #[inline] fn split_terminator<'a, P: Pattern<'a>>(&'a self, pat: P) -> SplitTerminator<'a, P> { SplitTerminator(SplitInternal { allow_trailing_empty: false, ..self.split(pat).0 }) } #[inline] fn rsplit_terminator<'a, P: Pattern<'a>>(&'a self, pat: P) -> RSplitTerminator<'a, P> where P::Searcher: ReverseSearcher<'a> { RSplitTerminator(self.split_terminator(pat).0) } #[inline] fn matches<'a, P: Pattern<'a>>(&'a self, pat: P) -> Matches<'a, P> { Matches(MatchesInternal(pat.into_searcher(self))) } #[inline] fn rmatches<'a, P: Pattern<'a>>(&'a self, pat: P) -> RMatches<'a, P> where P::Searcher: ReverseSearcher<'a> { RMatches(self.matches(pat).0) } #[inline] fn match_indices<'a, P: Pattern<'a>>(&'a self, pat: P) -> MatchIndices<'a, P> { MatchIndices(MatchIndicesInternal(pat.into_searcher(self))) } #[inline] fn rmatch_indices<'a, P: Pattern<'a>>(&'a self, pat: P) -> RMatchIndices<'a, P> where P::Searcher: ReverseSearcher<'a> { RMatchIndices(self.match_indices(pat).0) } #[inline] fn lines(&self) -> Lines { Lines(self.split_terminator('\n')) } #[inline] fn lines_any(&self) -> LinesAny { LinesAny(self.lines().map(LinesAnyMap)) } #[inline] fn char_len(&self) -> usize { self.chars().count() } fn slice_chars(&self, begin: usize, end: usize) -> &str { assert!(begin <= end); let mut count = 0; let mut begin_byte = None; let mut end_byte = None; // This could be even more efficient by not decoding, // only finding the char boundaries for (idx, _) in self.char_indices() { if count == begin { begin_byte = Some(idx); } if count == end { end_byte = Some(idx); break; } count += 1; } if begin_byte.is_none() && count == begin { begin_byte = Some(self.len()) } if end_byte.is_none() && count == end { end_byte = Some(self.len()) } match (begin_byte, end_byte) { (None, _) => panic!("slice_chars: `begin` is beyond end of string"), (_, None) => panic!("slice_chars: `end` is beyond end of string"), (Some(a), Some(b)) => unsafe { self.slice_unchecked(a, b) } } } #[inline] unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str { mem::transmute(Slice { data: self.as_ptr().offset(begin as isize), len: end - begin, }) } #[inline] unsafe fn slice_mut_unchecked(&mut self, begin: usize, end: usize) -> &mut str { mem::transmute(Slice { data: self.as_ptr().offset(begin as isize), len: end - begin, }) } #[inline] fn starts_with<'a, P: Pattern<'a>>(&'a self, pat: P) -> bool { pat.is_prefix_of(self) } #[inline] fn ends_with<'a, P: Pattern<'a>>(&'a self, pat: P) -> bool where P::Searcher: ReverseSearcher<'a> { pat.is_suffix_of(self) } #[inline] fn trim_matches<'a, P: Pattern<'a>>(&'a self, pat: P) -> &'a str where P::Searcher: DoubleEndedSearcher<'a> { let mut i = 0; let mut j = 0; let mut matcher = pat.into_searcher(self); if let Some((a, b)) = matcher.next_reject() { i = a; j = b; // Rember earliest known match, correct it below if // last match is different } if let Some((_, b)) = matcher.next_reject_back() { j = b; } unsafe { // Searcher is known to return valid indices self.slice_unchecked(i, j) } } #[inline] fn trim_left_matches<'a, P: Pattern<'a>>(&'a self, pat: P) -> &'a str { let mut i = self.len(); let mut matcher = pat.into_searcher(self); if let Some((a, _)) = matcher.next_reject() { i = a; } unsafe { // Searcher is known to return valid indices self.slice_unchecked(i, self.len()) } } #[inline] fn trim_right_matches<'a, P: Pattern<'a>>(&'a self, pat: P) -> &'a str where P::Searcher: ReverseSearcher<'a> { let mut j = 0; let mut matcher = pat.into_searcher(self); if let Some((_, b)) = matcher.next_reject_back() { j = b; } unsafe { // Searcher is known to return valid indices self.slice_unchecked(0, j) } } #[inline] fn is_char_boundary(&self, index: usize) -> bool { if index == self.len() { return true; } match self.as_bytes().get(index) { None => false, Some(&b) => b < 128 || b >= 192, } } #[inline] fn char_range_at(&self, i: usize) -> CharRange { let (c, n) = char_range_at_raw(self.as_bytes(), i); CharRange { ch: unsafe { mem::transmute(c) }, next: n } } #[inline] fn char_range_at_reverse(&self, start: usize) -> CharRange { let mut prev = start; prev = prev.saturating_sub(1); if self.as_bytes()[prev] < 128 { return CharRange{ch: self.as_bytes()[prev] as char, next: prev} } // Multibyte case is a fn to allow char_range_at_reverse to inline cleanly fn multibyte_char_range_at_reverse(s: &str, mut i: usize) -> CharRange { // while there is a previous byte == 10...... while i > 0 && s.as_bytes()[i] & !CONT_MASK == TAG_CONT_U8 { i -= 1; } let first= s.as_bytes()[i]; let w = UTF8_CHAR_WIDTH[first as usize]; assert!(w != 0); let mut val = utf8_first_byte(first, w as u32); val = utf8_acc_cont_byte(val, s.as_bytes()[i + 1]); if w > 2 { val = utf8_acc_cont_byte(val, s.as_bytes()[i + 2]); } if w > 3 { val = utf8_acc_cont_byte(val, s.as_bytes()[i + 3]); } return CharRange {ch: unsafe { mem::transmute(val) }, next: i}; } return multibyte_char_range_at_reverse(self, prev); } #[inline] fn char_at(&self, i: usize) -> char { self.char_range_at(i).ch } #[inline] fn char_at_reverse(&self, i: usize) -> char { self.char_range_at_reverse(i).ch } #[inline] fn as_bytes(&self) -> &[u8] { unsafe { mem::transmute(self) } } fn find<'a, P: Pattern<'a>>(&'a self, pat: P) -> Option { pat.into_searcher(self).next_match().map(|(i, _)| i) } fn rfind<'a, P: Pattern<'a>>(&'a self, pat: P) -> Option where P::Searcher: ReverseSearcher<'a> { pat.into_searcher(self).next_match_back().map(|(i, _)| i) } fn find_str<'a, P: Pattern<'a>>(&'a self, pat: P) -> Option { self.find(pat) } fn split_at(&self, mid: usize) -> (&str, &str) { // is_char_boundary checks that the index is in [0, .len()] if self.is_char_boundary(mid) { unsafe { (self.slice_unchecked(0, mid), self.slice_unchecked(mid, self.len())) } } else { slice_error_fail(self, 0, mid) } } fn split_at_mut(&mut self, mid: usize) -> (&mut str, &mut str) { // is_char_boundary checks that the index is in [0, .len()] if self.is_char_boundary(mid) { let len = self.len(); unsafe { let self2: &mut str = mem::transmute_copy(&self); (self.slice_mut_unchecked(0, mid), self2.slice_mut_unchecked(mid, len)) } } else { slice_error_fail(self, 0, mid) } } #[inline] fn slice_shift_char(&self) -> Option<(char, &str)> { if self.is_empty() { None } else { let ch = self.char_at(0); let next_s = unsafe { self.slice_unchecked(ch.len_utf8(), self.len()) }; Some((ch, next_s)) } } fn subslice_offset(&self, inner: &str) -> usize { let a_start = self.as_ptr() as usize; let a_end = a_start + self.len(); let b_start = inner.as_ptr() as usize; let b_end = b_start + inner.len(); assert!(a_start <= b_start); assert!(b_end <= a_end); b_start - a_start } #[inline] fn as_ptr(&self) -> *const u8 { self.repr().data } #[inline] fn len(&self) -> usize { self.repr().len } #[inline] fn is_empty(&self) -> bool { self.len() == 0 } #[inline] fn parse(&self) -> Result { FromStr::from_str(self) } } #[stable(feature = "rust1", since = "1.0.0")] impl AsRef<[u8]> for str { #[inline] fn as_ref(&self) -> &[u8] { self.as_bytes() } } /// Pluck a code point out of a UTF-8-like byte slice and return the /// index of the next code point. #[inline] fn char_range_at_raw(bytes: &[u8], i: usize) -> (u32, usize) { if bytes[i] < 128 { return (bytes[i] as u32, i + 1); } // Multibyte case is a fn to allow char_range_at to inline cleanly fn multibyte_char_range_at(bytes: &[u8], i: usize) -> (u32, usize) { let first = bytes[i]; let w = UTF8_CHAR_WIDTH[first as usize]; assert!(w != 0); let mut val = utf8_first_byte(first, w as u32); val = utf8_acc_cont_byte(val, bytes[i + 1]); if w > 2 { val = utf8_acc_cont_byte(val, bytes[i + 2]); } if w > 3 { val = utf8_acc_cont_byte(val, bytes[i + 3]); } return (val, i + w as usize); } multibyte_char_range_at(bytes, i) } #[stable(feature = "rust1", since = "1.0.0")] impl<'a> Default for &'a str { #[stable(feature = "rust1", since = "1.0.0")] fn default() -> &'a str { "" } }