// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use libc::{pid_t, c_void, c_int}; use libc; use std::c_str::CString; use std::io; use std::mem; use std::os; use std::ptr; use std::rt::rtio::{ProcessConfig, IoResult, IoError}; use std::rt::rtio; use super::file; use super::util; #[cfg(windows)] use std::io::fs::PathExtensions; #[cfg(windows)] use std::string::String; #[cfg(unix)] use super::c; #[cfg(unix)] use super::retry; #[cfg(unix)] use io::helper_thread::Helper; #[cfg(unix)] helper_init!(static mut HELPER: Helper) /** * A value representing a child process. * * The lifetime of this value is linked to the lifetime of the actual * process - the Process destructor calls self.finish() which waits * for the process to terminate. */ pub struct Process { /// The unique id of the process (this should never be negative). pid: pid_t, /// A handle to the process - on unix this will always be NULL, but on /// windows it will be a HANDLE to the process, which will prevent the /// pid being re-used until the handle is closed. handle: *mut (), /// None until finish() is called. exit_code: Option, /// Manually delivered signal exit_signal: Option, /// Deadline after which wait() will return deadline: u64, } #[cfg(unix)] enum Req { NewChild(libc::pid_t, Sender, u64), } impl Process { /// Creates a new process using native process-spawning abilities provided /// by the OS. Operations on this process will be blocking instead of using /// the runtime for sleeping just this current task. pub fn spawn(cfg: ProcessConfig) -> IoResult<(Process, Vec>)> { // right now we only handle stdin/stdout/stderr. if cfg.extra_io.len() > 0 { return Err(super::unimpl()); } fn get_io(io: rtio::StdioContainer, ret: &mut Vec>) -> IoResult> { match io { rtio::Ignored => { ret.push(None); Ok(None) } rtio::InheritFd(fd) => { ret.push(None); Ok(Some(file::FileDesc::new(fd, false))) } rtio::CreatePipe(readable, _writable) => { let (reader, writer) = try!(pipe()); let (theirs, ours) = if readable { (reader, writer) } else { (writer, reader) }; ret.push(Some(ours)); Ok(Some(theirs)) } } } let mut ret_io = Vec::new(); let res = spawn_process_os(cfg, try!(get_io(cfg.stdin, &mut ret_io)), try!(get_io(cfg.stdout, &mut ret_io)), try!(get_io(cfg.stderr, &mut ret_io))); match res { Ok(res) => { let p = Process { pid: res.pid, handle: res.handle, exit_code: None, exit_signal: None, deadline: 0, }; Ok((p, ret_io)) } Err(e) => Err(e) } } pub fn kill(pid: libc::pid_t, signum: int) -> IoResult<()> { unsafe { killpid(pid, signum) } } } impl rtio::RtioProcess for Process { fn id(&self) -> pid_t { self.pid } fn set_timeout(&mut self, timeout: Option) { self.deadline = timeout.map(|i| i + ::io::timer::now()).unwrap_or(0); } fn wait(&mut self) -> IoResult { match self.exit_code { Some(code) => Ok(code), None => { let code = try!(waitpid(self.pid, self.deadline)); // On windows, waitpid will never return a signal. If a signal // was successfully delivered to the process, however, we can // consider it as having died via a signal. let code = match self.exit_signal { None => code, Some(signal) if cfg!(windows) => rtio::ExitSignal(signal), Some(..) => code, }; self.exit_code = Some(code); Ok(code) } } } fn kill(&mut self, signum: int) -> IoResult<()> { #[cfg(unix)] use libc::EINVAL as ERROR; #[cfg(windows)] use libc::ERROR_NOTHING_TO_TERMINATE as ERROR; // On Linux (and possibly other unices), a process that has exited will // continue to accept signals because it is "defunct". The delivery of // signals will only fail once the child has been reaped. For this // reason, if the process hasn't exited yet, then we attempt to collect // their status with WNOHANG. if self.exit_code.is_none() { match waitpid_nowait(self.pid) { Some(code) => { self.exit_code = Some(code); } None => {} } } // if the process has finished, and therefore had waitpid called, // and we kill it, then on unix we might ending up killing a // newer process that happens to have the same (re-used) id match self.exit_code { Some(..) => return Err(IoError { code: ERROR as uint, extra: 0, detail: Some("can't kill an exited process".to_string()), }), None => {} } // A successfully delivered signal that isn't 0 (just a poll for being // alive) is recorded for windows (see wait()) match unsafe { killpid(self.pid, signum) } { Ok(()) if signum == 0 => Ok(()), Ok(()) => { self.exit_signal = Some(signum); Ok(()) } Err(e) => Err(e), } } } impl Drop for Process { fn drop(&mut self) { free_handle(self.handle); } } pub fn pipe() -> IoResult<(file::FileDesc, file::FileDesc)> { #[cfg(unix)] use libc::EMFILE as ERROR; #[cfg(windows)] use libc::WSAEMFILE as ERROR; struct Closer { fd: libc::c_int } let os::Pipe { reader, writer } = match unsafe { os::pipe() } { Ok(p) => p, Err(io::IoError { detail, .. }) => return Err(IoError { code: ERROR as uint, extra: 0, detail: detail, }) }; let mut reader = Closer { fd: reader }; let mut writer = Closer { fd: writer }; let native_reader = file::FileDesc::new(reader.fd, true); reader.fd = -1; let native_writer = file::FileDesc::new(writer.fd, true); writer.fd = -1; return Ok((native_reader, native_writer)); impl Drop for Closer { fn drop(&mut self) { if self.fd != -1 { let _ = unsafe { libc::close(self.fd) }; } } } } #[cfg(windows)] unsafe fn killpid(pid: pid_t, signal: int) -> IoResult<()> { let handle = libc::OpenProcess(libc::PROCESS_TERMINATE | libc::PROCESS_QUERY_INFORMATION, libc::FALSE, pid as libc::DWORD); if handle.is_null() { return Err(super::last_error()) } let ret = match signal { // test for existence on signal 0 0 => { let mut status = 0; let ret = libc::GetExitCodeProcess(handle, &mut status); if ret == 0 { Err(super::last_error()) } else if status != libc::STILL_ACTIVE { Err(IoError { code: libc::ERROR_NOTHING_TO_TERMINATE as uint, extra: 0, detail: None, }) } else { Ok(()) } } 15 | 9 => { // sigterm or sigkill let ret = libc::TerminateProcess(handle, 1); super::mkerr_winbool(ret) } _ => Err(IoError { code: libc::ERROR_CALL_NOT_IMPLEMENTED as uint, extra: 0, detail: Some("unsupported signal on windows".to_string()), }) }; let _ = libc::CloseHandle(handle); return ret; } #[cfg(not(windows))] unsafe fn killpid(pid: pid_t, signal: int) -> IoResult<()> { let r = libc::funcs::posix88::signal::kill(pid, signal as c_int); super::mkerr_libc(r) } struct SpawnProcessResult { pid: pid_t, handle: *mut (), } #[cfg(windows)] fn spawn_process_os(cfg: ProcessConfig, in_fd: Option, out_fd: Option, err_fd: Option) -> IoResult { use libc::types::os::arch::extra::{DWORD, HANDLE, STARTUPINFO}; use libc::consts::os::extra::{ TRUE, FALSE, STARTF_USESTDHANDLES, INVALID_HANDLE_VALUE, DUPLICATE_SAME_ACCESS }; use libc::funcs::extra::kernel32::{ GetCurrentProcess, DuplicateHandle, CloseHandle, CreateProcessW }; use libc::funcs::extra::msvcrt::get_osfhandle; use std::mem; use std::iter::Iterator; use std::str::StrSlice; if cfg.gid.is_some() || cfg.uid.is_some() { return Err(IoError { code: libc::ERROR_CALL_NOT_IMPLEMENTED as uint, extra: 0, detail: Some("unsupported gid/uid requested on windows".to_string()), }) } // To have the spawning semantics of unix/windows stay the same, we need to // read the *child's* PATH if one is provided. See #15149 for more details. let program = cfg.env.and_then(|env| { for &(ref key, ref v) in env.iter() { if b"PATH" != key.as_bytes_no_nul() { continue } // Split the value and test each path to see if the program exists. for path in os::split_paths(v.as_bytes_no_nul()).into_iter() { let path = path.join(cfg.program.as_bytes_no_nul()) .with_extension(os::consts::EXE_EXTENSION); if path.exists() { return Some(path.to_c_str()) } } break } None }); unsafe { let mut si = zeroed_startupinfo(); si.cb = mem::size_of::() as DWORD; si.dwFlags = STARTF_USESTDHANDLES; let cur_proc = GetCurrentProcess(); // Similarly to unix, we don't actually leave holes for the stdio file // descriptors, but rather open up /dev/null equivalents. These // equivalents are drawn from libuv's windows process spawning. let set_fd = |fd: &Option, slot: &mut HANDLE, is_stdin: bool| { match *fd { None => { let access = if is_stdin { libc::FILE_GENERIC_READ } else { libc::FILE_GENERIC_WRITE | libc::FILE_READ_ATTRIBUTES }; let size = mem::size_of::(); let mut sa = libc::SECURITY_ATTRIBUTES { nLength: size as libc::DWORD, lpSecurityDescriptor: ptr::null_mut(), bInheritHandle: 1, }; let filename: Vec = "NUL".utf16_units().collect(); let filename = filename.append_one(0); *slot = libc::CreateFileW(filename.as_ptr(), access, libc::FILE_SHARE_READ | libc::FILE_SHARE_WRITE, &mut sa, libc::OPEN_EXISTING, 0, ptr::null_mut()); if *slot == INVALID_HANDLE_VALUE { return Err(super::last_error()) } } Some(ref fd) => { let orig = get_osfhandle(fd.fd()) as HANDLE; if orig == INVALID_HANDLE_VALUE { return Err(super::last_error()) } if DuplicateHandle(cur_proc, orig, cur_proc, slot, 0, TRUE, DUPLICATE_SAME_ACCESS) == FALSE { return Err(super::last_error()) } } } Ok(()) }; try!(set_fd(&in_fd, &mut si.hStdInput, true)); try!(set_fd(&out_fd, &mut si.hStdOutput, false)); try!(set_fd(&err_fd, &mut si.hStdError, false)); let cmd_str = make_command_line(program.as_ref().unwrap_or(cfg.program), cfg.args); let mut pi = zeroed_process_information(); let mut create_err = None; // stolen from the libuv code. let mut flags = libc::CREATE_UNICODE_ENVIRONMENT; if cfg.detach { flags |= libc::DETACHED_PROCESS | libc::CREATE_NEW_PROCESS_GROUP; } with_envp(cfg.env, |envp| { with_dirp(cfg.cwd, |dirp| { let mut cmd_str: Vec = cmd_str.as_slice().utf16_units().collect(); cmd_str = cmd_str.append_one(0); let created = CreateProcessW(ptr::null(), cmd_str.as_mut_ptr(), ptr::null_mut(), ptr::null_mut(), TRUE, flags, envp, dirp, &mut si, &mut pi); if created == FALSE { create_err = Some(super::last_error()); } }) }); assert!(CloseHandle(si.hStdInput) != 0); assert!(CloseHandle(si.hStdOutput) != 0); assert!(CloseHandle(si.hStdError) != 0); match create_err { Some(err) => return Err(err), None => {} } // We close the thread handle because we don't care about keeping the // thread id valid, and we aren't keeping the thread handle around to be // able to close it later. We don't close the process handle however // because std::we want the process id to stay valid at least until the // calling code closes the process handle. assert!(CloseHandle(pi.hThread) != 0); Ok(SpawnProcessResult { pid: pi.dwProcessId as pid_t, handle: pi.hProcess as *mut () }) } } #[cfg(windows)] fn zeroed_startupinfo() -> libc::types::os::arch::extra::STARTUPINFO { libc::types::os::arch::extra::STARTUPINFO { cb: 0, lpReserved: ptr::null_mut(), lpDesktop: ptr::null_mut(), lpTitle: ptr::null_mut(), dwX: 0, dwY: 0, dwXSize: 0, dwYSize: 0, dwXCountChars: 0, dwYCountCharts: 0, dwFillAttribute: 0, dwFlags: 0, wShowWindow: 0, cbReserved2: 0, lpReserved2: ptr::null_mut(), hStdInput: libc::INVALID_HANDLE_VALUE, hStdOutput: libc::INVALID_HANDLE_VALUE, hStdError: libc::INVALID_HANDLE_VALUE, } } #[cfg(windows)] fn zeroed_process_information() -> libc::types::os::arch::extra::PROCESS_INFORMATION { libc::types::os::arch::extra::PROCESS_INFORMATION { hProcess: ptr::null_mut(), hThread: ptr::null_mut(), dwProcessId: 0, dwThreadId: 0 } } #[cfg(windows)] fn make_command_line(prog: &CString, args: &[CString]) -> String { let mut cmd = String::new(); append_arg(&mut cmd, prog.as_str() .expect("expected program name to be utf-8 encoded")); for arg in args.iter() { cmd.push_char(' '); append_arg(&mut cmd, arg.as_str() .expect("expected argument to be utf-8 encoded")); } return cmd; fn append_arg(cmd: &mut String, arg: &str) { // If an argument has 0 characters then we need to quote it to ensure // that it actually gets passed through on the command line or otherwise // it will be dropped entirely when parsed on the other end. let quote = arg.chars().any(|c| c == ' ' || c == '\t') || arg.len() == 0; if quote { cmd.push_char('"'); } let argvec: Vec = arg.chars().collect(); for i in range(0u, argvec.len()) { append_char_at(cmd, &argvec, i); } if quote { cmd.push_char('"'); } } fn append_char_at(cmd: &mut String, arg: &Vec, i: uint) { match *arg.get(i) { '"' => { // Escape quotes. cmd.push_str("\\\""); } '\\' => { if backslash_run_ends_in_quote(arg, i) { // Double all backslashes that are in runs before quotes. cmd.push_str("\\\\"); } else { // Pass other backslashes through unescaped. cmd.push_char('\\'); } } c => { cmd.push_char(c); } } } fn backslash_run_ends_in_quote(s: &Vec, mut i: uint) -> bool { while i < s.len() && *s.get(i) == '\\' { i += 1; } return i < s.len() && *s.get(i) == '"'; } } #[cfg(unix)] fn spawn_process_os(cfg: ProcessConfig, in_fd: Option, out_fd: Option, err_fd: Option) -> IoResult { use libc::funcs::posix88::unistd::{fork, dup2, close, chdir, execvp}; use libc::funcs::bsd44::getdtablesize; use io::c; mod rustrt { extern { pub fn rust_unset_sigprocmask(); } } #[cfg(target_os = "macos")] unsafe fn set_environ(envp: *const c_void) { extern { fn _NSGetEnviron() -> *mut *const c_void; } *_NSGetEnviron() = envp; } #[cfg(not(target_os = "macos"))] unsafe fn set_environ(envp: *const c_void) { extern { static mut environ: *const c_void; } environ = envp; } unsafe fn set_cloexec(fd: c_int) { let ret = c::ioctl(fd, c::FIOCLEX); assert_eq!(ret, 0); } let dirp = cfg.cwd.map(|c| c.as_ptr()).unwrap_or(ptr::null()); let cfg = unsafe { mem::transmute::>(cfg) }; with_envp(cfg.env, proc(envp) { with_argv(cfg.program, cfg.args, proc(argv) unsafe { let (mut input, mut output) = try!(pipe()); // We may use this in the child, so perform allocations before the // fork let devnull = "/dev/null".to_c_str(); set_cloexec(output.fd()); let pid = fork(); if pid < 0 { return Err(super::last_error()) } else if pid > 0 { drop(output); let mut bytes = [0, ..4]; return match input.inner_read(bytes) { Ok(4) => { let errno = (bytes[0] as i32 << 24) | (bytes[1] as i32 << 16) | (bytes[2] as i32 << 8) | (bytes[3] as i32 << 0); Err(IoError { code: errno as uint, detail: None, extra: 0, }) } Err(..) => { Ok(SpawnProcessResult { pid: pid, handle: ptr::null_mut() }) } Ok(..) => fail!("short read on the cloexec pipe"), }; } // And at this point we've reached a special time in the life of the // child. The child must now be considered hamstrung and unable to // do anything other than syscalls really. Consider the following // scenario: // // 1. Thread A of process 1 grabs the malloc() mutex // 2. Thread B of process 1 forks(), creating thread C // 3. Thread C of process 2 then attempts to malloc() // 4. The memory of process 2 is the same as the memory of // process 1, so the mutex is locked. // // This situation looks a lot like deadlock, right? It turns out // that this is what pthread_atfork() takes care of, which is // presumably implemented across platforms. The first thing that // threads to *before* forking is to do things like grab the malloc // mutex, and then after the fork they unlock it. // // Despite this information, libnative's spawn has been witnessed to // deadlock on both OSX and FreeBSD. I'm not entirely sure why, but // all collected backtraces point at malloc/free traffic in the // child spawned process. // // For this reason, the block of code below should contain 0 // invocations of either malloc of free (or their related friends). // // As an example of not having malloc/free traffic, we don't close // this file descriptor by dropping the FileDesc (which contains an // allocation). Instead we just close it manually. This will never // have the drop glue anyway because this code never returns (the // child will either exec() or invoke libc::exit) let _ = libc::close(input.fd()); fn fail(output: &mut file::FileDesc) -> ! { let errno = os::errno(); let bytes = [ (errno >> 24) as u8, (errno >> 16) as u8, (errno >> 8) as u8, (errno >> 0) as u8, ]; assert!(output.inner_write(bytes).is_ok()); unsafe { libc::_exit(1) } } rustrt::rust_unset_sigprocmask(); // If a stdio file descriptor is set to be ignored (via a -1 file // descriptor), then we don't actually close it, but rather open // up /dev/null into that file descriptor. Otherwise, the first file // descriptor opened up in the child would be numbered as one of the // stdio file descriptors, which is likely to wreak havoc. let setup = |src: Option, dst: c_int| { let src = match src { None => { let flags = if dst == libc::STDIN_FILENO { libc::O_RDONLY } else { libc::O_RDWR }; libc::open(devnull.as_ptr(), flags, 0) } Some(obj) => { let fd = obj.fd(); // Leak the memory and the file descriptor. We're in the // child now an all our resources are going to be // cleaned up very soon mem::forget(obj); fd } }; src != -1 && retry(|| dup2(src, dst)) != -1 }; if !setup(in_fd, libc::STDIN_FILENO) { fail(&mut output) } if !setup(out_fd, libc::STDOUT_FILENO) { fail(&mut output) } if !setup(err_fd, libc::STDERR_FILENO) { fail(&mut output) } // close all other fds for fd in range(3, getdtablesize()).rev() { if fd != output.fd() { let _ = close(fd as c_int); } } match cfg.gid { Some(u) => { if libc::setgid(u as libc::gid_t) != 0 { fail(&mut output); } } None => {} } match cfg.uid { Some(u) => { // When dropping privileges from root, the `setgroups` call // will remove any extraneous groups. If we don't call this, // then even though our uid has dropped, we may still have // groups that enable us to do super-user things. This will // fail if we aren't root, so don't bother checking the // return value, this is just done as an optimistic // privilege dropping function. extern { fn setgroups(ngroups: libc::c_int, ptr: *const libc::c_void) -> libc::c_int; } let _ = setgroups(0, 0 as *const libc::c_void); if libc::setuid(u as libc::uid_t) != 0 { fail(&mut output); } } None => {} } if cfg.detach { // Don't check the error of setsid because it fails if we're the // process leader already. We just forked so it shouldn't return // error, but ignore it anyway. let _ = libc::setsid(); } if !dirp.is_null() && chdir(dirp) == -1 { fail(&mut output); } if !envp.is_null() { set_environ(envp); } let _ = execvp(*argv, argv as *mut _); fail(&mut output); }) }) } #[cfg(unix)] fn with_argv(prog: &CString, args: &[CString], cb: proc(*const *const libc::c_char) -> T) -> T { let mut ptrs: Vec<*const libc::c_char> = Vec::with_capacity(args.len()+1); // Convert the CStrings into an array of pointers. Note: the // lifetime of the various CStrings involved is guaranteed to be // larger than the lifetime of our invocation of cb, but this is // technically unsafe as the callback could leak these pointers // out of our scope. ptrs.push(prog.as_ptr()); ptrs.extend(args.iter().map(|tmp| tmp.as_ptr())); // Add a terminating null pointer (required by libc). ptrs.push(ptr::null()); cb(ptrs.as_ptr()) } #[cfg(unix)] fn with_envp(env: Option<&[(&CString, &CString)]>, cb: proc(*const c_void) -> T) -> T { // On posixy systems we can pass a char** for envp, which is a // null-terminated array of "k=v\0" strings. Since we must create // these strings locally, yet expose a raw pointer to them, we // create a temporary vector to own the CStrings that outlives the // call to cb. match env { Some(env) => { let mut tmps = Vec::with_capacity(env.len()); for pair in env.iter() { let mut kv = Vec::new(); kv.push_all(pair.ref0().as_bytes_no_nul()); kv.push('=' as u8); kv.push_all(pair.ref1().as_bytes()); // includes terminal \0 tmps.push(kv); } // As with `with_argv`, this is unsafe, since cb could leak the pointers. let mut ptrs: Vec<*const libc::c_char> = tmps.iter() .map(|tmp| tmp.as_ptr() as *const libc::c_char) .collect(); ptrs.push(ptr::null()); cb(ptrs.as_ptr() as *const c_void) } _ => cb(ptr::null()) } } #[cfg(windows)] fn with_envp(env: Option<&[(&CString, &CString)]>, cb: |*mut c_void| -> T) -> T { // On Windows we pass an "environment block" which is not a char**, but // rather a concatenation of null-terminated k=v\0 sequences, with a final // \0 to terminate. match env { Some(env) => { let mut blk = Vec::new(); for pair in env.iter() { let kv = format!("{}={}", pair.ref0().as_str().unwrap(), pair.ref1().as_str().unwrap()); blk.extend(kv.as_slice().utf16_units()); blk.push(0); } blk.push(0); cb(blk.as_mut_ptr() as *mut c_void) } _ => cb(ptr::null_mut()) } } #[cfg(windows)] fn with_dirp(d: Option<&CString>, cb: |*const u16| -> T) -> T { match d { Some(dir) => { let dir_str = dir.as_str() .expect("expected workingdirectory to be utf-8 encoded"); let dir_str: Vec = dir_str.utf16_units().collect(); let dir_str = dir_str.append_one(0); cb(dir_str.as_ptr()) }, None => cb(ptr::null()) } } #[cfg(windows)] fn free_handle(handle: *mut ()) { assert!(unsafe { libc::CloseHandle(mem::transmute(handle)) != 0 }) } #[cfg(unix)] fn free_handle(_handle: *mut ()) { // unix has no process handle object, just a pid } #[cfg(unix)] fn translate_status(status: c_int) -> rtio::ProcessExit { #![allow(non_snake_case)] #[cfg(any(target_os = "linux", target_os = "android"))] mod imp { pub fn WIFEXITED(status: i32) -> bool { (status & 0xff) == 0 } pub fn WEXITSTATUS(status: i32) -> i32 { (status >> 8) & 0xff } pub fn WTERMSIG(status: i32) -> i32 { status & 0x7f } } #[cfg(any(target_os = "macos", target_os = "ios", target_os = "freebsd", target_os = "dragonfly"))] mod imp { pub fn WIFEXITED(status: i32) -> bool { (status & 0x7f) == 0 } pub fn WEXITSTATUS(status: i32) -> i32 { status >> 8 } pub fn WTERMSIG(status: i32) -> i32 { status & 0o177 } } if imp::WIFEXITED(status) { rtio::ExitStatus(imp::WEXITSTATUS(status) as int) } else { rtio::ExitSignal(imp::WTERMSIG(status) as int) } } /** * Waits for a process to exit and returns the exit code, failing * if there is no process with the specified id. * * Note that this is private to avoid race conditions on unix where if * a user calls waitpid(some_process.get_id()) then some_process.finish() * and some_process.destroy() and some_process.finalize() will then either * operate on a none-existent process or, even worse, on a newer process * with the same id. */ #[cfg(windows)] fn waitpid(pid: pid_t, deadline: u64) -> IoResult { use libc::types::os::arch::extra::DWORD; use libc::consts::os::extra::{ SYNCHRONIZE, PROCESS_QUERY_INFORMATION, FALSE, STILL_ACTIVE, INFINITE, WAIT_TIMEOUT, WAIT_OBJECT_0, }; use libc::funcs::extra::kernel32::{ OpenProcess, GetExitCodeProcess, CloseHandle, WaitForSingleObject, }; unsafe { let process = OpenProcess(SYNCHRONIZE | PROCESS_QUERY_INFORMATION, FALSE, pid as DWORD); if process.is_null() { return Err(super::last_error()) } loop { let mut status = 0; if GetExitCodeProcess(process, &mut status) == FALSE { let err = Err(super::last_error()); assert!(CloseHandle(process) != 0); return err; } if status != STILL_ACTIVE { assert!(CloseHandle(process) != 0); return Ok(rtio::ExitStatus(status as int)); } let interval = if deadline == 0 { INFINITE } else { let now = ::io::timer::now(); if deadline < now {0} else {(deadline - now) as u32} }; match WaitForSingleObject(process, interval) { WAIT_OBJECT_0 => {} WAIT_TIMEOUT => { assert!(CloseHandle(process) != 0); return Err(util::timeout("process wait timed out")) } _ => { let err = Err(super::last_error()); assert!(CloseHandle(process) != 0); return err } } } } } #[cfg(unix)] fn waitpid(pid: pid_t, deadline: u64) -> IoResult { use std::cmp; use std::comm; static mut WRITE_FD: libc::c_int = 0; let mut status = 0 as c_int; if deadline == 0 { return match retry(|| unsafe { c::waitpid(pid, &mut status, 0) }) { -1 => fail!("unknown waitpid error: {}", super::last_error().code), _ => Ok(translate_status(status)), } } // On unix, wait() and its friends have no timeout parameters, so there is // no way to time out a thread in wait(). From some googling and some // thinking, it appears that there are a few ways to handle timeouts in // wait(), but the only real reasonable one for a multi-threaded program is // to listen for SIGCHLD. // // With this in mind, the waiting mechanism with a timeout barely uses // waitpid() at all. There are a few times that waitpid() is invoked with // WNOHANG, but otherwise all the necessary blocking is done by waiting for // a SIGCHLD to arrive (and that blocking has a timeout). Note, however, // that waitpid() is still used to actually reap the child. // // Signal handling is super tricky in general, and this is no exception. Due // to the async nature of SIGCHLD, we use the self-pipe trick to transmit // data out of the signal handler to the rest of the application. The first // idea would be to have each thread waiting with a timeout to read this // output file descriptor, but a write() is akin to a signal(), not a // broadcast(), so it would only wake up one thread, and possibly the wrong // thread. Hence a helper thread is used. // // The helper thread here is responsible for farming requests for a // waitpid() with a timeout, and then processing all of the wait requests. // By guaranteeing that only this helper thread is reading half of the // self-pipe, we're sure that we'll never lose a SIGCHLD. This helper thread // is also responsible for select() to wait for incoming messages or // incoming SIGCHLD messages, along with passing an appropriate timeout to // select() to wake things up as necessary. // // The ordering of the following statements is also very purposeful. First, // we must be guaranteed that the helper thread is booted and available to // receive SIGCHLD signals, and then we must also ensure that we do a // nonblocking waitpid() at least once before we go ask the sigchld helper. // This prevents the race where the child exits, we boot the helper, and // then we ask for the child's exit status (never seeing a sigchld). // // The actual communication between the helper thread and this thread is // quite simple, just a channel moving data around. unsafe { HELPER.boot(register_sigchld, waitpid_helper) } match waitpid_nowait(pid) { Some(ret) => return Ok(ret), None => {} } let (tx, rx) = channel(); unsafe { HELPER.send(NewChild(pid, tx, deadline)); } return match rx.recv_opt() { Ok(e) => Ok(e), Err(()) => Err(util::timeout("wait timed out")), }; // Register a new SIGCHLD handler, returning the reading half of the // self-pipe plus the old handler registered (return value of sigaction). // // Be sure to set up the self-pipe first because as soon as we register a // handler we're going to start receiving signals. fn register_sigchld() -> (libc::c_int, c::sigaction) { unsafe { let mut pipes = [0, ..2]; assert_eq!(libc::pipe(pipes.as_mut_ptr()), 0); util::set_nonblocking(pipes[0], true).ok().unwrap(); util::set_nonblocking(pipes[1], true).ok().unwrap(); WRITE_FD = pipes[1]; let mut old: c::sigaction = mem::zeroed(); let mut new: c::sigaction = mem::zeroed(); new.sa_handler = sigchld_handler; new.sa_flags = c::SA_NOCLDSTOP; assert_eq!(c::sigaction(c::SIGCHLD, &new, &mut old), 0); (pipes[0], old) } } // Helper thread for processing SIGCHLD messages fn waitpid_helper(input: libc::c_int, messages: Receiver, (read_fd, old): (libc::c_int, c::sigaction)) { util::set_nonblocking(input, true).ok().unwrap(); let mut set: c::fd_set = unsafe { mem::zeroed() }; let mut tv: libc::timeval; let mut active = Vec::<(libc::pid_t, Sender, u64)>::new(); let max = cmp::max(input, read_fd) + 1; 'outer: loop { // Figure out the timeout of our syscall-to-happen. If we're waiting // for some processes, then they'll have a timeout, otherwise we // wait indefinitely for a message to arrive. // // FIXME: sure would be nice to not have to scan the entire array let min = active.iter().map(|a| *a.ref2()).enumerate().min_by(|p| { p.val1() }); let (p, idx) = match min { Some((idx, deadline)) => { let now = ::io::timer::now(); let ms = if now < deadline {deadline - now} else {0}; tv = util::ms_to_timeval(ms); (&mut tv as *mut _, idx) } None => (ptr::null_mut(), -1), }; // Wait for something to happen c::fd_set(&mut set, input); c::fd_set(&mut set, read_fd); match unsafe { c::select(max, &mut set, ptr::null_mut(), ptr::null_mut(), p) } { // interrupted, retry -1 if os::errno() == libc::EINTR as int => continue, // We read something, break out and process 1 | 2 => {} // Timeout, the pending request is removed 0 => { drop(active.remove(idx)); continue } n => fail!("error in select {} ({})", os::errno(), n), } // Process any pending messages if drain(input) { loop { match messages.try_recv() { Ok(NewChild(pid, tx, deadline)) => { active.push((pid, tx, deadline)); } Err(comm::Disconnected) => { assert!(active.len() == 0); break 'outer; } Err(comm::Empty) => break, } } } // If a child exited (somehow received SIGCHLD), then poll all // children to see if any of them exited. // // We also attempt to be responsible netizens when dealing with // SIGCHLD by invoking any previous SIGCHLD handler instead of just // ignoring any previous SIGCHLD handler. Note that we don't provide // a 1:1 mapping of our handler invocations to the previous handler // invocations because we drain the `read_fd` entirely. This is // probably OK because the kernel is already allowed to coalesce // simultaneous signals, we're just doing some extra coalescing. // // Another point of note is that this likely runs the signal handler // on a different thread than the one that received the signal. I // *think* this is ok at this time. // // The main reason for doing this is to allow stdtest to run native // tests as well. Both libgreen and libnative are running around // with process timeouts, but libgreen should get there first // (currently libuv doesn't handle old signal handlers). if drain(read_fd) { let i: uint = unsafe { mem::transmute(old.sa_handler) }; if i != 0 { assert!(old.sa_flags & c::SA_SIGINFO == 0); (old.sa_handler)(c::SIGCHLD); } // FIXME: sure would be nice to not have to scan the entire // array... active.retain(|&(pid, ref tx, _)| { match waitpid_nowait(pid) { Some(msg) => { tx.send(msg); false } None => true, } }); } } // Once this helper thread is done, we re-register the old sigchld // handler and close our intermediate file descriptors. unsafe { assert_eq!(c::sigaction(c::SIGCHLD, &old, ptr::null_mut()), 0); let _ = libc::close(read_fd); let _ = libc::close(WRITE_FD); WRITE_FD = -1; } } // Drain all pending data from the file descriptor, returning if any data // could be drained. This requires that the file descriptor is in // nonblocking mode. fn drain(fd: libc::c_int) -> bool { let mut ret = false; loop { let mut buf = [0u8, ..1]; match unsafe { libc::read(fd, buf.as_mut_ptr() as *mut libc::c_void, buf.len() as libc::size_t) } { n if n > 0 => { ret = true; } 0 => return true, -1 if util::wouldblock() => return ret, n => fail!("bad read {} ({})", os::last_os_error(), n), } } } // Signal handler for SIGCHLD signals, must be async-signal-safe! // // This function will write to the writing half of the "self pipe" to wake // up the helper thread if it's waiting. Note that this write must be // nonblocking because if it blocks and the reader is the thread we // interrupted, then we'll deadlock. // // When writing, if the write returns EWOULDBLOCK then we choose to ignore // it. At that point we're guaranteed that there's something in the pipe // which will wake up the other end at some point, so we just allow this // signal to be coalesced with the pending signals on the pipe. extern fn sigchld_handler(_signum: libc::c_int) { let msg = 1i; match unsafe { libc::write(WRITE_FD, &msg as *const _ as *const libc::c_void, 1) } { 1 => {} -1 if util::wouldblock() => {} // see above comments n => fail!("bad error on write fd: {} {}", n, os::errno()), } } } fn waitpid_nowait(pid: pid_t) -> Option { return waitpid_os(pid); // This code path isn't necessary on windows #[cfg(windows)] fn waitpid_os(_pid: pid_t) -> Option { None } #[cfg(unix)] fn waitpid_os(pid: pid_t) -> Option { let mut status = 0 as c_int; match retry(|| unsafe { c::waitpid(pid, &mut status, c::WNOHANG) }) { n if n == pid => Some(translate_status(status)), 0 => None, n => fail!("unknown waitpid error `{}`: {}", n, super::last_error().code), } } } #[cfg(test)] mod tests { #[test] #[cfg(windows)] fn test_make_command_line() { use std::str; use std::c_str::CString; use super::make_command_line; fn test_wrapper(prog: &str, args: &[&str]) -> String { make_command_line(&prog.to_c_str(), args.iter() .map(|a| a.to_c_str()) .collect::>() .as_slice()) } assert_eq!( test_wrapper("prog", ["aaa", "bbb", "ccc"]), "prog aaa bbb ccc".to_string() ); assert_eq!( test_wrapper("C:\\Program Files\\blah\\blah.exe", ["aaa"]), "\"C:\\Program Files\\blah\\blah.exe\" aaa".to_string() ); assert_eq!( test_wrapper("C:\\Program Files\\test", ["aa\"bb"]), "\"C:\\Program Files\\test\" aa\\\"bb".to_string() ); assert_eq!( test_wrapper("echo", ["a b c"]), "echo \"a b c\"".to_string() ); assert_eq!( test_wrapper("\u03c0\u042f\u97f3\u00e6\u221e", []), "\u03c0\u042f\u97f3\u00e6\u221e".to_string() ); } }