// Copyright 2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use std::collections::HashMap; use std::fmt; use std::from_str::from_str; use std::str::{MaybeOwned, Owned, Slice}; use compile::Program; use parse; use vm; use vm::{CaptureLocs, MatchKind, Exists, Location, Submatches}; /// Escapes all regular expression meta characters in `text`. /// /// The string returned may be safely used as a literal in a regular /// expression. pub fn quote(text: &str) -> String { let mut quoted = String::with_capacity(text.len()); for c in text.chars() { if parse::is_punct(c) { quoted.push_char('\\') } quoted.push_char(c); } quoted } /// Tests if the given regular expression matches somewhere in the text given. /// /// If there was a problem compiling the regular expression, an error is /// returned. /// /// To find submatches, split or replace text, you'll need to compile an /// expression first. /// /// Note that you should prefer the `regex!` macro when possible. For example, /// `regex!("...").is_match("...")`. pub fn is_match(regex: &str, text: &str) -> Result { Regex::new(regex).map(|r| r.is_match(text)) } /// A compiled regular expression /// /// It is represented as either a sequence of bytecode instructions (dynamic) /// or as a specialized Rust function (native). It can be used to search, split /// or replace text. All searching is done with an implicit `.*?` at the /// beginning and end of an expression. To force an expression to match the /// whole string (or a prefix or a suffix), you must use an anchor like `^` or /// `$` (or `\A` and `\z`). /// /// While this crate will handle Unicode strings (whether in the regular /// expression or in the search text), all positions returned are **byte /// indices**. Every byte index is guaranteed to be at a Unicode code point /// boundary. /// /// The lifetimes `'r` and `'t` in this crate correspond to the lifetime of a /// compiled regular expression and text to search, respectively. /// /// The only methods that allocate new strings are the string replacement /// methods. All other methods (searching and splitting) return borrowed /// pointers into the string given. /// /// # Examples /// /// Find the location of a US phone number: /// /// ```rust /// # use regex::Regex; /// let re = match Regex::new("[0-9]{3}-[0-9]{3}-[0-9]{4}") { /// Ok(re) => re, /// Err(err) => fail!("{}", err), /// }; /// assert_eq!(re.find("phone: 111-222-3333"), Some((7, 19))); /// ``` /// /// You can also use the `regex!` macro to compile a regular expression when /// you compile your program: /// /// ```rust /// #![feature(phase)] /// extern crate regex; /// #[phase(plugin)] extern crate regex_macros; /// /// fn main() { /// let re = regex!(r"\d+"); /// assert_eq!(re.find("123 abc"), Some((0, 3))); /// } /// ``` /// /// Given an incorrect regular expression, `regex!` will cause the Rust /// compiler to produce a compile time error. /// Note that `regex!` will compile the expression to native Rust code, which /// makes it much faster when searching text. /// More details about the `regex!` macro can be found in the `regex` crate /// documentation. #[deriving(Clone)] #[allow(visible_private_types)] pub enum Regex { // The representation of `Regex` is exported to support the `regex!` // syntax extension. Do not rely on it. // // See the comments for the `program` module in `lib.rs` for a more // detailed explanation for what `regex!` requires. #[doc(hidden)] Dynamic(Dynamic), #[doc(hidden)] Native(Native), } #[deriving(Clone)] #[doc(hidden)] pub struct Dynamic { original: String, names: Vec>, #[doc(hidden)] pub prog: Program } #[doc(hidden)] pub struct Native { #[doc(hidden)] pub original: &'static str, #[doc(hidden)] pub names: &'static [Option<&'static str>], #[doc(hidden)] pub prog: fn(MatchKind, &str, uint, uint) -> Vec> } impl Clone for Native { fn clone(&self) -> Native { *self } } impl fmt::Show for Regex { /// Shows the original regular expression. fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.as_str()) } } impl Regex { /// Compiles a dynamic regular expression. Once compiled, it can be /// used repeatedly to search, split or replace text in a string. /// /// When possible, you should prefer the `regex!` macro since it is /// safer and always faster. /// /// If an invalid expression is given, then an error is returned. pub fn new(re: &str) -> Result { let ast = try!(parse::parse(re)); let (prog, names) = Program::new(ast); Ok(Dynamic(Dynamic { original: re.to_string(), names: names, prog: prog, })) } /// Returns true if and only if the regex matches the string given. /// /// # Example /// /// Test if some text contains at least one word with exactly 13 /// characters: /// /// ```rust /// # #![feature(phase)] /// # extern crate regex; #[phase(plugin)] extern crate regex_macros; /// # fn main() { /// let text = "I categorically deny having triskaidekaphobia."; /// let matched = regex!(r"\b\w{13}\b").is_match(text); /// assert!(matched); /// # } /// ``` pub fn is_match(&self, text: &str) -> bool { has_match(&exec(self, Exists, text)) } /// Returns the start and end byte range of the leftmost-first match in /// `text`. If no match exists, then `None` is returned. /// /// Note that this should only be used if you want to discover the position /// of the match. Testing the existence of a match is faster if you use /// `is_match`. /// /// # Example /// /// Find the start and end location of the first word with exactly 13 /// characters: /// /// ```rust /// # #![feature(phase)] /// # extern crate regex; #[phase(plugin)] extern crate regex_macros; /// # fn main() { /// let text = "I categorically deny having triskaidekaphobia."; /// let pos = regex!(r"\b\w{13}\b").find(text); /// assert_eq!(pos, Some((2, 15))); /// # } /// ``` pub fn find(&self, text: &str) -> Option<(uint, uint)> { let caps = exec(self, Location, text); if has_match(&caps) { Some((caps[0].unwrap(), caps[1].unwrap())) } else { None } } /// Returns an iterator for each successive non-overlapping match in /// `text`, returning the start and end byte indices with respect to /// `text`. /// /// # Example /// /// Find the start and end location of every word with exactly 13 /// characters: /// /// ```rust /// # #![feature(phase)] /// # extern crate regex; #[phase(plugin)] extern crate regex_macros; /// # fn main() { /// let text = "Retroactively relinquishing remunerations is reprehensible."; /// for pos in regex!(r"\b\w{13}\b").find_iter(text) { /// println!("{}", pos); /// } /// // Output: /// // (0, 13) /// // (14, 27) /// // (28, 41) /// // (45, 58) /// # } /// ``` pub fn find_iter<'r, 't>(&'r self, text: &'t str) -> FindMatches<'r, 't> { FindMatches { re: self, search: text, last_end: 0, last_match: None, } } /// Returns the capture groups corresponding to the leftmost-first /// match in `text`. Capture group `0` always corresponds to the entire /// match. If no match is found, then `None` is returned. /// /// You should only use `captures` if you need access to submatches. /// Otherwise, `find` is faster for discovering the location of the overall /// match. /// /// # Examples /// /// Say you have some text with movie names and their release years, /// like "'Citizen Kane' (1941)". It'd be nice if we could search for text /// looking like that, while also extracting the movie name and its release /// year separately. /// /// ```rust /// # #![feature(phase)] /// # extern crate regex; #[phase(plugin)] extern crate regex_macros; /// # fn main() { /// let re = regex!(r"'([^']+)'\s+\((\d{4})\)"); /// let text = "Not my favorite movie: 'Citizen Kane' (1941)."; /// let caps = re.captures(text).unwrap(); /// assert_eq!(caps.at(1), "Citizen Kane"); /// assert_eq!(caps.at(2), "1941"); /// assert_eq!(caps.at(0), "'Citizen Kane' (1941)"); /// # } /// ``` /// /// Note that the full match is at capture group `0`. Each subsequent /// capture group is indexed by the order of its opening `(`. /// /// We can make this example a bit clearer by using *named* capture groups: /// /// ```rust /// # #![feature(phase)] /// # extern crate regex; #[phase(plugin)] extern crate regex_macros; /// # fn main() { /// let re = regex!(r"'(?P[^']+)'\s+\((?P<year>\d{4})\)"); /// let text = "Not my favorite movie: 'Citizen Kane' (1941)."; /// let caps = re.captures(text).unwrap(); /// assert_eq!(caps.name("title"), "Citizen Kane"); /// assert_eq!(caps.name("year"), "1941"); /// assert_eq!(caps.at(0), "'Citizen Kane' (1941)"); /// # } /// ``` /// /// Here we name the capture groups, which we can access with the `name` /// method. Note that the named capture groups are still accessible with /// `at`. /// /// The `0`th capture group is always unnamed, so it must always be /// accessed with `at(0)`. pub fn captures<'t>(&self, text: &'t str) -> Option<Captures<'t>> { let caps = exec(self, Submatches, text); Captures::new(self, text, caps) } /// Returns an iterator over all the non-overlapping capture groups matched /// in `text`. This is operationally the same as `find_iter` (except it /// yields information about submatches). /// /// # Example /// /// We can use this to find all movie titles and their release years in /// some text, where the movie is formatted like "'Title' (xxxx)": /// /// ```rust /// # #![feature(phase)] /// # extern crate regex; #[phase(plugin)] extern crate regex_macros; /// # fn main() { /// let re = regex!(r"'(?P<title>[^']+)'\s+\((?P<year>\d{4})\)"); /// let text = "'Citizen Kane' (1941), 'The Wizard of Oz' (1939), 'M' (1931)."; /// for caps in re.captures_iter(text) { /// println!("Movie: {}, Released: {}", caps.name("title"), caps.name("year")); /// } /// // Output: /// // Movie: Citizen Kane, Released: 1941 /// // Movie: The Wizard of Oz, Released: 1939 /// // Movie: M, Released: 1931 /// # } /// ``` pub fn captures_iter<'r, 't>(&'r self, text: &'t str) -> FindCaptures<'r, 't> { FindCaptures { re: self, search: text, last_match: None, last_end: 0, } } /// Returns an iterator of substrings of `text` delimited by a match /// of the regular expression. /// Namely, each element of the iterator corresponds to text that *isn't* /// matched by the regular expression. /// /// This method will *not* copy the text given. /// /// # Example /// /// To split a string delimited by arbitrary amounts of spaces or tabs: /// /// ```rust /// # #![feature(phase)] /// # extern crate regex; #[phase(plugin)] extern crate regex_macros; /// # fn main() { /// let re = regex!(r"[ \t]+"); /// let fields: Vec<&str> = re.split("a b \t c\td e").collect(); /// assert_eq!(fields, vec!("a", "b", "c", "d", "e")); /// # } /// ``` pub fn split<'r, 't>(&'r self, text: &'t str) -> RegexSplits<'r, 't> { RegexSplits { finder: self.find_iter(text), last: 0, } } /// Returns an iterator of at most `limit` substrings of `text` delimited /// by a match of the regular expression. (A `limit` of `0` will return no /// substrings.) /// Namely, each element of the iterator corresponds to text that *isn't* /// matched by the regular expression. /// The remainder of the string that is not split will be the last element /// in the iterator. /// /// This method will *not* copy the text given. /// /// # Example /// /// Get the first two words in some text: /// /// ```rust /// # #![feature(phase)] /// # extern crate regex; #[phase(plugin)] extern crate regex_macros; /// # fn main() { /// let re = regex!(r"\W+"); /// let fields: Vec<&str> = re.splitn("Hey! How are you?", 3).collect(); /// assert_eq!(fields, vec!("Hey", "How", "are you?")); /// # } /// ``` pub fn splitn<'r, 't>(&'r self, text: &'t str, limit: uint) -> RegexSplitsN<'r, 't> { RegexSplitsN { splits: self.split(text), cur: 0, limit: limit, } } /// Replaces the leftmost-first match with the replacement provided. /// The replacement can be a regular string (where `$N` and `$name` are /// expanded to match capture groups) or a function that takes the matches' /// `Captures` and returns the replaced string. /// /// If no match is found, then a copy of the string is returned unchanged. /// /// # Examples /// /// Note that this function is polymorphic with respect to the replacement. /// In typical usage, this can just be a normal string: /// /// ```rust /// # #![feature(phase)] /// # extern crate regex; #[phase(plugin)] extern crate regex_macros; /// # fn main() { /// let re = regex!("[^01]+"); /// assert_eq!(re.replace("1078910", "").as_slice(), "1010"); /// # } /// ``` /// /// But anything satisfying the `Replacer` trait will work. For example, /// a closure of type `|&Captures| -> String` provides direct access to the /// captures corresponding to a match. This allows one to access /// submatches easily: /// /// ```rust /// # #![feature(phase)] /// # extern crate regex; #[phase(plugin)] extern crate regex_macros; /// # use regex::Captures; fn main() { /// let re = regex!(r"([^,\s]+),\s+(\S+)"); /// let result = re.replace("Springsteen, Bruce", |caps: &Captures| { /// format!("{} {}", caps.at(2), caps.at(1)) /// }); /// assert_eq!(result.as_slice(), "Bruce Springsteen"); /// # } /// ``` /// /// But this is a bit cumbersome to use all the time. Instead, a simple /// syntax is supported that expands `$name` into the corresponding capture /// group. Here's the last example, but using this expansion technique /// with named capture groups: /// /// ```rust /// # #![feature(phase)] /// # extern crate regex; #[phase(plugin)] extern crate regex_macros; /// # fn main() { /// let re = regex!(r"(?P<last>[^,\s]+),\s+(?P<first>\S+)"); /// let result = re.replace("Springsteen, Bruce", "$first $last"); /// assert_eq!(result.as_slice(), "Bruce Springsteen"); /// # } /// ``` /// /// Note that using `$2` instead of `$first` or `$1` instead of `$last` /// would produce the same result. To write a literal `$` use `$$`. /// /// Finally, sometimes you just want to replace a literal string with no /// submatch expansion. This can be done by wrapping a string with /// `NoExpand`: /// /// ```rust /// # #![feature(phase)] /// # extern crate regex; #[phase(plugin)] extern crate regex_macros; /// # fn main() { /// use regex::NoExpand; /// /// let re = regex!(r"(?P<last>[^,\s]+),\s+(\S+)"); /// let result = re.replace("Springsteen, Bruce", NoExpand("$2 $last")); /// assert_eq!(result.as_slice(), "$2 $last"); /// # } /// ``` pub fn replace<R: Replacer>(&self, text: &str, rep: R) -> String { self.replacen(text, 1, rep) } /// Replaces all non-overlapping matches in `text` with the /// replacement provided. This is the same as calling `replacen` with /// `limit` set to `0`. /// /// See the documentation for `replace` for details on how to access /// submatches in the replacement string. pub fn replace_all<R: Replacer>(&self, text: &str, rep: R) -> String { self.replacen(text, 0, rep) } /// Replaces at most `limit` non-overlapping matches in `text` with the /// replacement provided. If `limit` is 0, then all non-overlapping matches /// are replaced. /// /// See the documentation for `replace` for details on how to access /// submatches in the replacement string. pub fn replacen<R: Replacer> (&self, text: &str, limit: uint, mut rep: R) -> String { let mut new = String::with_capacity(text.len()); let mut last_match = 0u; for (i, cap) in self.captures_iter(text).enumerate() { // It'd be nicer to use the 'take' iterator instead, but it seemed // awkward given that '0' => no limit. if limit > 0 && i >= limit { break } let (s, e) = cap.pos(0).unwrap(); // captures only reports matches new.push_str(text.slice(last_match, s)); new.push_str(rep.reg_replace(&cap).as_slice()); last_match = e; } new.append(text.slice(last_match, text.len())) } /// Returns the original string of this regex. pub fn as_str<'a>(&'a self) -> &'a str { match *self { Dynamic(Dynamic { ref original, .. }) => original.as_slice(), Native(Native { ref original, .. }) => original.as_slice(), } } #[doc(hidden)] #[allow(visible_private_types)] #[experimental] pub fn names_iter<'a>(&'a self) -> NamesIter<'a> { match *self { Native(ref n) => NamesIterNative(n.names.iter()), Dynamic(ref d) => NamesIterDynamic(d.names.iter()) } } fn names_len(&self) -> uint { match *self { Native(ref n) => n.names.len(), Dynamic(ref d) => d.names.len() } } } enum NamesIter<'a> { NamesIterNative(::std::slice::Items<'a, Option<&'static str>>), NamesIterDynamic(::std::slice::Items<'a, Option<String>>) } impl<'a> Iterator<Option<String>> for NamesIter<'a> { fn next(&mut self) -> Option<Option<String>> { match *self { NamesIterNative(ref mut i) => i.next().map(|x| x.map(|s| s.to_string())), NamesIterDynamic(ref mut i) => i.next().map(|x| x.as_ref().map(|s| s.to_string())), } } } /// NoExpand indicates literal string replacement. /// /// It can be used with `replace` and `replace_all` to do a literal /// string replacement without expanding `$name` to their corresponding /// capture groups. /// /// `'r` is the lifetime of the literal text. pub struct NoExpand<'t>(pub &'t str); /// Replacer describes types that can be used to replace matches in a string. pub trait Replacer { /// Returns a possibly owned string that is used to replace the match /// corresponding the the `caps` capture group. /// /// The `'a` lifetime refers to the lifetime of a borrowed string when /// a new owned string isn't needed (e.g., for `NoExpand`). fn reg_replace<'a>(&'a mut self, caps: &Captures) -> MaybeOwned<'a>; } impl<'t> Replacer for NoExpand<'t> { fn reg_replace<'a>(&'a mut self, _: &Captures) -> MaybeOwned<'a> { let NoExpand(s) = *self; Slice(s) } } impl<'t> Replacer for &'t str { fn reg_replace<'a>(&'a mut self, caps: &Captures) -> MaybeOwned<'a> { Owned(caps.expand(*self)) } } impl<'t> Replacer for |&Captures|: 't -> String { fn reg_replace<'a>(&'a mut self, caps: &Captures) -> MaybeOwned<'a> { Owned((*self)(caps)) } } /// Yields all substrings delimited by a regular expression match. /// /// `'r` is the lifetime of the compiled expression and `'t` is the lifetime /// of the string being split. pub struct RegexSplits<'r, 't> { finder: FindMatches<'r, 't>, last: uint, } impl<'r, 't> Iterator<&'t str> for RegexSplits<'r, 't> { fn next(&mut self) -> Option<&'t str> { let text = self.finder.search; match self.finder.next() { None => { if self.last >= text.len() { None } else { let s = text.slice(self.last, text.len()); self.last = text.len(); Some(s) } } Some((s, e)) => { let matched = text.slice(self.last, s); self.last = e; Some(matched) } } } } /// Yields at most `N` substrings delimited by a regular expression match. /// /// The last substring will be whatever remains after splitting. /// /// `'r` is the lifetime of the compiled expression and `'t` is the lifetime /// of the string being split. pub struct RegexSplitsN<'r, 't> { splits: RegexSplits<'r, 't>, cur: uint, limit: uint, } impl<'r, 't> Iterator<&'t str> for RegexSplitsN<'r, 't> { fn next(&mut self) -> Option<&'t str> { let text = self.splits.finder.search; if self.cur >= self.limit { None } else { self.cur += 1; if self.cur >= self.limit { Some(text.slice(self.splits.last, text.len())) } else { self.splits.next() } } } } /// Captures represents a group of captured strings for a single match. /// /// The 0th capture always corresponds to the entire match. Each subsequent /// index corresponds to the next capture group in the regex. /// If a capture group is named, then the matched string is *also* available /// via the `name` method. (Note that the 0th capture is always unnamed and so /// must be accessed with the `at` method.) /// /// Positions returned from a capture group are always byte indices. /// /// `'t` is the lifetime of the matched text. pub struct Captures<'t> { text: &'t str, locs: CaptureLocs, named: Option<HashMap<String, uint>>, } impl<'t> Captures<'t> { #[allow(experimental)] fn new(re: &Regex, search: &'t str, locs: CaptureLocs) -> Option<Captures<'t>> { if !has_match(&locs) { return None } let named = if re.names_len() == 0 { None } else { let mut named = HashMap::new(); for (i, name) in re.names_iter().enumerate() { match name { None => {}, Some(name) => { named.insert(name, i); } } } Some(named) }; Some(Captures { text: search, locs: locs, named: named, }) } /// Returns the start and end positions of the Nth capture group. /// Returns `None` if `i` is not a valid capture group or if the capture /// group did not match anything. /// The positions returned are *always* byte indices with respect to the /// original string matched. pub fn pos(&self, i: uint) -> Option<(uint, uint)> { let (s, e) = (i * 2, i * 2 + 1); if e >= self.locs.len() || self.locs[s].is_none() { // VM guarantees that each pair of locations are both Some or None. return None } Some((self.locs[s].unwrap(), self.locs[e].unwrap())) } /// Returns the matched string for the capture group `i`. /// If `i` isn't a valid capture group or didn't match anything, then the /// empty string is returned. pub fn at(&self, i: uint) -> &'t str { match self.pos(i) { None => "", Some((s, e)) => { self.text.slice(s, e) } } } /// Returns the matched string for the capture group named `name`. /// If `name` isn't a valid capture group or didn't match anything, then /// the empty string is returned. pub fn name(&self, name: &str) -> &'t str { match self.named { None => "", Some(ref h) => { match h.find_equiv(&name) { None => "", Some(i) => self.at(*i), } } } } /// Creates an iterator of all the capture groups in order of appearance /// in the regular expression. pub fn iter(&'t self) -> SubCaptures<'t> { SubCaptures { idx: 0, caps: self, } } /// Creates an iterator of all the capture group positions in order of /// appearance in the regular expression. Positions are byte indices /// in terms of the original string matched. pub fn iter_pos(&'t self) -> SubCapturesPos<'t> { SubCapturesPos { idx: 0, caps: self, } } /// Expands all instances of `$name` in `text` to the corresponding capture /// group `name`. /// /// `name` may be an integer corresponding to the index of the /// capture group (counted by order of opening parenthesis where `0` is the /// entire match) or it can be a name (consisting of letters, digits or /// underscores) corresponding to a named capture group. /// /// If `name` isn't a valid capture group (whether the name doesn't exist or /// isn't a valid index), then it is replaced with the empty string. /// /// To write a literal `$` use `$$`. pub fn expand(&self, text: &str) -> String { // How evil can you get? // FIXME: Don't use regexes for this. It's completely unnecessary. let re = Regex::new(r"(^|[^$]|\b)\$(\w+)").unwrap(); let text = re.replace_all(text, |refs: &Captures| -> String { let (pre, name) = (refs.at(1), refs.at(2)); format!("{}{}", pre, match from_str::<uint>(name.as_slice()) { None => self.name(name).to_string(), Some(i) => self.at(i).to_string(), }) }); let re = Regex::new(r"\$\$").unwrap(); re.replace_all(text.as_slice(), NoExpand("$")) } } impl<'t> Collection for Captures<'t> { /// Returns the number of captured groups. #[inline] fn len(&self) -> uint { self.locs.len() / 2 } } /// An iterator over capture groups for a particular match of a regular /// expression. /// /// `'t` is the lifetime of the matched text. pub struct SubCaptures<'t> { idx: uint, caps: &'t Captures<'t>, } impl<'t> Iterator<&'t str> for SubCaptures<'t> { fn next(&mut self) -> Option<&'t str> { if self.idx < self.caps.len() { self.idx += 1; Some(self.caps.at(self.idx - 1)) } else { None } } } /// An iterator over capture group positions for a particular match of a /// regular expression. /// /// Positions are byte indices in terms of the original string matched. /// /// `'t` is the lifetime of the matched text. pub struct SubCapturesPos<'t> { idx: uint, caps: &'t Captures<'t>, } impl<'t> Iterator<Option<(uint, uint)>> for SubCapturesPos<'t> { fn next(&mut self) -> Option<Option<(uint, uint)>> { if self.idx < self.caps.len() { self.idx += 1; Some(self.caps.pos(self.idx - 1)) } else { None } } } /// An iterator that yields all non-overlapping capture groups matching a /// particular regular expression. /// /// The iterator stops when no more matches can be found. /// /// `'r` is the lifetime of the compiled expression and `'t` is the lifetime /// of the matched string. pub struct FindCaptures<'r, 't> { re: &'r Regex, search: &'t str, last_match: Option<uint>, last_end: uint, } impl<'r, 't> Iterator<Captures<'t>> for FindCaptures<'r, 't> { fn next(&mut self) -> Option<Captures<'t>> { if self.last_end > self.search.len() { return None } let caps = exec_slice(self.re, Submatches, self.search, self.last_end, self.search.len()); let (s, e) = if !has_match(&caps) { return None } else { (caps[0].unwrap(), caps[1].unwrap()) }; // Don't accept empty matches immediately following a match. // i.e., no infinite loops please. if e == s && Some(self.last_end) == self.last_match { self.last_end += 1; return self.next() } self.last_end = e; self.last_match = Some(self.last_end); Captures::new(self.re, self.search, caps) } } /// An iterator over all non-overlapping matches for a particular string. /// /// The iterator yields a tuple of integers corresponding to the start and end /// of the match. The indices are byte offsets. The iterator stops when no more /// matches can be found. /// /// `'r` is the lifetime of the compiled expression and `'t` is the lifetime /// of the matched string. pub struct FindMatches<'r, 't> { re: &'r Regex, search: &'t str, last_match: Option<uint>, last_end: uint, } impl<'r, 't> Iterator<(uint, uint)> for FindMatches<'r, 't> { fn next(&mut self) -> Option<(uint, uint)> { if self.last_end > self.search.len() { return None } let caps = exec_slice(self.re, Location, self.search, self.last_end, self.search.len()); let (s, e) = if !has_match(&caps) { return None } else { (caps[0].unwrap(), caps[1].unwrap()) }; // Don't accept empty matches immediately following a match. // i.e., no infinite loops please. if e == s && Some(self.last_end) == self.last_match { self.last_end += 1; return self.next() } self.last_end = e; self.last_match = Some(self.last_end); Some((s, e)) } } fn exec(re: &Regex, which: MatchKind, input: &str) -> CaptureLocs { exec_slice(re, which, input, 0, input.len()) } fn exec_slice(re: &Regex, which: MatchKind, input: &str, s: uint, e: uint) -> CaptureLocs { match *re { Dynamic(Dynamic { ref prog, .. }) => vm::run(which, prog, input, s, e), Native(Native { prog, .. }) => prog(which, input, s, e), } } #[inline] fn has_match(caps: &CaptureLocs) -> bool { caps.len() >= 2 && caps[0].is_some() && caps[1].is_some() }