//! This module defines the `DepNode` type which the compiler uses to represent //! nodes in the dependency graph. A `DepNode` consists of a `DepKind` (which //! specifies the kind of thing it represents, like a piece of HIR, MIR, etc) //! and a `Fingerprint`, a 128 bit hash value the exact meaning of which //! depends on the node's `DepKind`. Together, the kind and the fingerprint //! fully identify a dependency node, even across multiple compilation sessions. //! In other words, the value of the fingerprint does not depend on anything //! that is specific to a given compilation session, like an unpredictable //! interning key (e.g., NodeId, DefId, Symbol) or the numeric value of a //! pointer. The concept behind this could be compared to how git commit hashes //! uniquely identify a given commit and has a few advantages: //! //! * A `DepNode` can simply be serialized to disk and loaded in another session //! without the need to do any "rebasing (like we have to do for Spans and //! NodeIds) or "retracing" like we had to do for `DefId` in earlier //! implementations of the dependency graph. //! * A `Fingerprint` is just a bunch of bits, which allows `DepNode` to //! implement `Copy`, `Sync`, `Send`, `Freeze`, etc. //! * Since we just have a bit pattern, `DepNode` can be mapped from disk into //! memory without any post-processing (e.g., "abomination-style" pointer //! reconstruction). //! * Because a `DepNode` is self-contained, we can instantiate `DepNodes` that //! refer to things that do not exist anymore. In previous implementations //! `DepNode` contained a `DefId`. A `DepNode` referring to something that //! had been removed between the previous and the current compilation session //! could not be instantiated because the current compilation session //! contained no `DefId` for thing that had been removed. //! //! `DepNode` definition happens in the `define_dep_nodes!()` macro. This macro //! defines the `DepKind` enum and a corresponding `DepConstructor` enum. The //! `DepConstructor` enum links a `DepKind` to the parameters that are needed at //! runtime in order to construct a valid `DepNode` fingerprint. //! //! Because the macro sees what parameters a given `DepKind` requires, it can //! "infer" some properties for each kind of `DepNode`: //! //! * Whether a `DepNode` of a given kind has any parameters at all. Some //! `DepNode`s, like `Krate`, represent global concepts with only one value. //! * Whether it is possible, in principle, to reconstruct a query key from a //! given `DepNode`. Many `DepKind`s only require a single `DefId` parameter, //! in which case it is possible to map the node's fingerprint back to the //! `DefId` it was computed from. In other cases, too much information gets //! lost during fingerprint computation. //! //! The `DepConstructor` enum, together with `DepNode::new()` ensures that only //! valid `DepNode` instances can be constructed. For example, the API does not //! allow for constructing parameterless `DepNode`s with anything other //! than a zeroed out fingerprint. More generally speaking, it relieves the //! user of the `DepNode` API of having to know how to compute the expected //! fingerprint for a given set of node parameters. use crate::mir::interpret::GlobalId; use crate::hir::def_id::{CrateNum, DefId, DefIndex, CRATE_DEF_INDEX}; use crate::hir::map::DefPathHash; use crate::hir::HirId; use crate::ich::{Fingerprint, StableHashingContext}; use rustc_data_structures::stable_hasher::{StableHasher, HashStable}; use std::fmt; use std::hash::Hash; use syntax_pos::symbol::InternedString; use crate::traits; use crate::traits::query::{ CanonicalProjectionGoal, CanonicalTyGoal, CanonicalTypeOpAscribeUserTypeGoal, CanonicalTypeOpEqGoal, CanonicalTypeOpSubtypeGoal, CanonicalPredicateGoal, CanonicalTypeOpProvePredicateGoal, CanonicalTypeOpNormalizeGoal, }; use crate::ty::{self, TyCtxt, ParamEnvAnd, Ty}; use crate::ty::subst::SubstsRef; // erase!() just makes tokens go away. It's used to specify which macro argument // is repeated (i.e., which sub-expression of the macro we are in) but don't need // to actually use any of the arguments. macro_rules! erase { ($x:tt) => ({}) } macro_rules! replace { ($x:tt with $($y:tt)*) => ($($y)*) } macro_rules! is_anon_attr { (anon) => (true); ($attr:ident) => (false); } macro_rules! is_eval_always_attr { (eval_always) => (true); ($attr:ident) => (false); } macro_rules! contains_anon_attr { ($($attr:ident),*) => ({$(is_anon_attr!($attr) | )* false}); } macro_rules! contains_eval_always_attr { ($($attr:ident),*) => ({$(is_eval_always_attr!($attr) | )* false}); } macro_rules! define_dep_nodes { (<$tcx:tt> $( [$($attr:ident),* ] $variant:ident $(( $tuple_arg_ty:ty $(,)? ))* $({ $($struct_arg_name:ident : $struct_arg_ty:ty),* })* ,)* ) => ( #[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable)] pub enum DepKind { $($variant),* } impl DepKind { #[allow(unreachable_code)] #[inline] pub fn can_reconstruct_query_key<$tcx>(&self) -> bool { match *self { $( DepKind :: $variant => { if contains_anon_attr!($($attr),*) { return false; } // tuple args $({ return <$tuple_arg_ty as DepNodeParams> ::CAN_RECONSTRUCT_QUERY_KEY; })* // struct args $({ return <( $($struct_arg_ty,)* ) as DepNodeParams> ::CAN_RECONSTRUCT_QUERY_KEY; })* true } )* } } // FIXME: Make `is_anon`, `is_eval_always` and `has_params` properties // of queries #[inline(always)] pub fn is_anon(&self) -> bool { match *self { $( DepKind :: $variant => { contains_anon_attr!($($attr),*) } )* } } #[inline(always)] pub fn is_eval_always(&self) -> bool { match *self { $( DepKind :: $variant => { contains_eval_always_attr!($($attr), *) } )* } } #[allow(unreachable_code)] #[inline(always)] pub fn has_params(&self) -> bool { match *self { $( DepKind :: $variant => { // tuple args $({ erase!($tuple_arg_ty); return true; })* // struct args $({ $(erase!($struct_arg_name);)* return true; })* false } )* } } } pub enum DepConstructor<$tcx> { $( $variant $(( $tuple_arg_ty ))* $({ $($struct_arg_name : $struct_arg_ty),* })* ),* } #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable)] pub struct DepNode { pub kind: DepKind, pub hash: Fingerprint, } impl DepNode { #[allow(unreachable_code, non_snake_case)] #[inline(always)] pub fn new<'a, 'gcx, 'tcx>(tcx: TyCtxt<'a, 'gcx, 'tcx>, dep: DepConstructor<'gcx>) -> DepNode where 'gcx: 'a + 'tcx, 'tcx: 'a { match dep { $( DepConstructor :: $variant $(( replace!(($tuple_arg_ty) with arg) ))* $({ $($struct_arg_name),* })* => { // tuple args $({ erase!($tuple_arg_ty); let hash = DepNodeParams::to_fingerprint(&arg, tcx); let dep_node = DepNode { kind: DepKind::$variant, hash }; if cfg!(debug_assertions) && !dep_node.kind.can_reconstruct_query_key() && (tcx.sess.opts.debugging_opts.incremental_info || tcx.sess.opts.debugging_opts.query_dep_graph) { tcx.dep_graph.register_dep_node_debug_str(dep_node, || { arg.to_debug_str(tcx) }); } return dep_node; })* // struct args $({ let tupled_args = ( $($struct_arg_name,)* ); let hash = DepNodeParams::to_fingerprint(&tupled_args, tcx); let dep_node = DepNode { kind: DepKind::$variant, hash }; if cfg!(debug_assertions) && !dep_node.kind.can_reconstruct_query_key() && (tcx.sess.opts.debugging_opts.incremental_info || tcx.sess.opts.debugging_opts.query_dep_graph) { tcx.dep_graph.register_dep_node_debug_str(dep_node, || { tupled_args.to_debug_str(tcx) }); } return dep_node; })* DepNode { kind: DepKind::$variant, hash: Fingerprint::ZERO, } } )* } } /// Construct a DepNode from the given DepKind and DefPathHash. This /// method will assert that the given DepKind actually requires a /// single DefId/DefPathHash parameter. #[inline(always)] pub fn from_def_path_hash(kind: DepKind, def_path_hash: DefPathHash) -> DepNode { debug_assert!(kind.can_reconstruct_query_key() && kind.has_params()); DepNode { kind, hash: def_path_hash.0, } } /// Creates a new, parameterless DepNode. This method will assert /// that the DepNode corresponding to the given DepKind actually /// does not require any parameters. #[inline(always)] pub fn new_no_params(kind: DepKind) -> DepNode { debug_assert!(!kind.has_params()); DepNode { kind, hash: Fingerprint::ZERO, } } /// Extracts the DefId corresponding to this DepNode. This will work /// if two conditions are met: /// /// 1. The Fingerprint of the DepNode actually is a DefPathHash, and /// 2. the item that the DefPath refers to exists in the current tcx. /// /// Condition (1) is determined by the DepKind variant of the /// DepNode. Condition (2) might not be fulfilled if a DepNode /// refers to something from the previous compilation session that /// has been removed. #[inline] pub fn extract_def_id(&self, tcx: TyCtxt<'_, '_, '_>) -> Option { if self.kind.can_reconstruct_query_key() { let def_path_hash = DefPathHash(self.hash); tcx.def_path_hash_to_def_id.as_ref()? .get(&def_path_hash).cloned() } else { None } } /// Used in testing pub fn from_label_string(label: &str, def_path_hash: DefPathHash) -> Result { let kind = match label { $( stringify!($variant) => DepKind::$variant, )* _ => return Err(()), }; if !kind.can_reconstruct_query_key() { return Err(()); } if kind.has_params() { Ok(def_path_hash.to_dep_node(kind)) } else { Ok(DepNode::new_no_params(kind)) } } /// Used in testing pub fn has_label_string(label: &str) -> bool { match label { $( stringify!($variant) => true, )* _ => false, } } } /// Contains variant => str representations for constructing /// DepNode groups for tests. #[allow(dead_code, non_upper_case_globals)] pub mod label_strs { $( pub const $variant: &str = stringify!($variant); )* } ); } impl fmt::Debug for DepNode { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "{:?}", self.kind)?; if !self.kind.has_params() && !self.kind.is_anon() { return Ok(()); } write!(f, "(")?; crate::ty::tls::with_opt(|opt_tcx| { if let Some(tcx) = opt_tcx { if let Some(def_id) = self.extract_def_id(tcx) { write!(f, "{}", tcx.def_path_debug_str(def_id))?; } else if let Some(ref s) = tcx.dep_graph.dep_node_debug_str(*self) { write!(f, "{}", s)?; } else { write!(f, "{}", self.hash)?; } } else { write!(f, "{}", self.hash)?; } Ok(()) })?; write!(f, ")") } } impl DefPathHash { #[inline(always)] pub fn to_dep_node(self, kind: DepKind) -> DepNode { DepNode::from_def_path_hash(kind, self) } } impl DefId { #[inline(always)] pub fn to_dep_node(self, tcx: TyCtxt<'_, '_, '_>, kind: DepKind) -> DepNode { DepNode::from_def_path_hash(kind, tcx.def_path_hash(self)) } } rustc_dep_node_append!([define_dep_nodes!][ <'tcx> // We use this for most things when incr. comp. is turned off. [] Null, // Represents the `Krate` as a whole (the `hir::Krate` value) (as // distinct from the krate module). This is basically a hash of // the entire krate, so if you read from `Krate` (e.g., by calling // `tcx.hir().krate()`), we will have to assume that any change // means that you need to be recompiled. This is because the // `Krate` value gives you access to all other items. To avoid // this fate, do not call `tcx.hir().krate()`; instead, prefer // wrappers like `tcx.visit_all_items_in_krate()`. If there is no // suitable wrapper, you can use `tcx.dep_graph.ignore()` to gain // access to the krate, but you must remember to add suitable // edges yourself for the individual items that you read. [eval_always] Krate, // Represents the body of a function or method. The def-id is that of the // function/method. [eval_always] HirBody(DefId), // Represents the HIR node with the given node-id [eval_always] Hir(DefId), // Represents metadata from an extern crate. [eval_always] CrateMetadata(CrateNum), [eval_always] AllLocalTraitImpls, [anon] TraitSelect, [] CompileCodegenUnit(InternedString), [eval_always] Analysis(CrateNum), ]); pub trait RecoverKey<'tcx>: Sized { fn recover(tcx: TyCtxt<'_, 'tcx, 'tcx>, dep_node: &DepNode) -> Option; } impl RecoverKey<'tcx> for CrateNum { fn recover(tcx: TyCtxt<'_, 'tcx, 'tcx>, dep_node: &DepNode) -> Option { dep_node.extract_def_id(tcx).map(|id| id.krate) } } impl RecoverKey<'tcx> for DefId { fn recover(tcx: TyCtxt<'_, 'tcx, 'tcx>, dep_node: &DepNode) -> Option { dep_node.extract_def_id(tcx) } } impl RecoverKey<'tcx> for DefIndex { fn recover(tcx: TyCtxt<'_, 'tcx, 'tcx>, dep_node: &DepNode) -> Option { dep_node.extract_def_id(tcx).map(|id| id.index) } } trait DepNodeParams<'a, 'gcx: 'tcx + 'a, 'tcx: 'a> : fmt::Debug { const CAN_RECONSTRUCT_QUERY_KEY: bool; /// This method turns the parameters of a DepNodeConstructor into an opaque /// Fingerprint to be used in DepNode. /// Not all DepNodeParams support being turned into a Fingerprint (they /// don't need to if the corresponding DepNode is anonymous). fn to_fingerprint(&self, _: TyCtxt<'a, 'gcx, 'tcx>) -> Fingerprint { panic!("Not implemented. Accidentally called on anonymous node?") } fn to_debug_str(&self, _: TyCtxt<'a, 'gcx, 'tcx>) -> String { format!("{:?}", self) } } impl<'a, 'gcx: 'tcx + 'a, 'tcx: 'a, T> DepNodeParams<'a, 'gcx, 'tcx> for T where T: HashStable> + fmt::Debug { default const CAN_RECONSTRUCT_QUERY_KEY: bool = false; default fn to_fingerprint(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Fingerprint { let mut hcx = tcx.create_stable_hashing_context(); let mut hasher = StableHasher::new(); self.hash_stable(&mut hcx, &mut hasher); hasher.finish() } default fn to_debug_str(&self, _: TyCtxt<'a, 'gcx, 'tcx>) -> String { format!("{:?}", *self) } } impl<'a, 'gcx: 'tcx + 'a, 'tcx: 'a> DepNodeParams<'a, 'gcx, 'tcx> for DefId { const CAN_RECONSTRUCT_QUERY_KEY: bool = true; fn to_fingerprint(&self, tcx: TyCtxt<'_, '_, '_>) -> Fingerprint { tcx.def_path_hash(*self).0 } fn to_debug_str(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> String { tcx.def_path_str(*self) } } impl<'a, 'gcx: 'tcx + 'a, 'tcx: 'a> DepNodeParams<'a, 'gcx, 'tcx> for DefIndex { const CAN_RECONSTRUCT_QUERY_KEY: bool = true; fn to_fingerprint(&self, tcx: TyCtxt<'_, '_, '_>) -> Fingerprint { tcx.hir().definitions().def_path_hash(*self).0 } fn to_debug_str(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> String { tcx.def_path_str(DefId::local(*self)) } } impl<'a, 'gcx: 'tcx + 'a, 'tcx: 'a> DepNodeParams<'a, 'gcx, 'tcx> for CrateNum { const CAN_RECONSTRUCT_QUERY_KEY: bool = true; fn to_fingerprint(&self, tcx: TyCtxt<'_, '_, '_>) -> Fingerprint { let def_id = DefId { krate: *self, index: CRATE_DEF_INDEX, }; tcx.def_path_hash(def_id).0 } fn to_debug_str(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> String { tcx.crate_name(*self).as_str().to_string() } } impl<'a, 'gcx: 'tcx + 'a, 'tcx: 'a> DepNodeParams<'a, 'gcx, 'tcx> for (DefId, DefId) { const CAN_RECONSTRUCT_QUERY_KEY: bool = false; // We actually would not need to specialize the implementation of this // method but it's faster to combine the hashes than to instantiate a full // hashing context and stable-hashing state. fn to_fingerprint(&self, tcx: TyCtxt<'_, '_, '_>) -> Fingerprint { let (def_id_0, def_id_1) = *self; let def_path_hash_0 = tcx.def_path_hash(def_id_0); let def_path_hash_1 = tcx.def_path_hash(def_id_1); def_path_hash_0.0.combine(def_path_hash_1.0) } fn to_debug_str(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> String { let (def_id_0, def_id_1) = *self; format!("({}, {})", tcx.def_path_debug_str(def_id_0), tcx.def_path_debug_str(def_id_1)) } } impl<'a, 'gcx: 'tcx + 'a, 'tcx: 'a> DepNodeParams<'a, 'gcx, 'tcx> for HirId { const CAN_RECONSTRUCT_QUERY_KEY: bool = false; // We actually would not need to specialize the implementation of this // method but it's faster to combine the hashes than to instantiate a full // hashing context and stable-hashing state. fn to_fingerprint(&self, tcx: TyCtxt<'_, '_, '_>) -> Fingerprint { let HirId { owner, local_id, } = *self; let def_path_hash = tcx.def_path_hash(DefId::local(owner)); let local_id = Fingerprint::from_smaller_hash(local_id.as_u32().into()); def_path_hash.0.combine(local_id) } } /// A "work product" corresponds to a `.o` (or other) file that we /// save in between runs. These IDs do not have a `DefId` but rather /// some independent path or string that persists between runs without /// the need to be mapped or unmapped. (This ensures we can serialize /// them even in the absence of a tcx.) #[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable)] pub struct WorkProductId { hash: Fingerprint } impl WorkProductId { pub fn from_cgu_name(cgu_name: &str) -> WorkProductId { let mut hasher = StableHasher::new(); cgu_name.len().hash(&mut hasher); cgu_name.hash(&mut hasher); WorkProductId { hash: hasher.finish() } } pub fn from_fingerprint(fingerprint: Fingerprint) -> WorkProductId { WorkProductId { hash: fingerprint } } } impl_stable_hash_for!(struct crate::dep_graph::WorkProductId { hash });