use crate::dep_graph::{DepKind, DepNode, RecoverKey, SerializedDepNodeIndex}; use crate::mir; use crate::mir::interpret::{GlobalId, LitToConstInput}; use crate::traits; use crate::traits::query::{ CanonicalPredicateGoal, CanonicalProjectionGoal, CanonicalTyGoal, CanonicalTypeOpAscribeUserTypeGoal, CanonicalTypeOpEqGoal, CanonicalTypeOpNormalizeGoal, CanonicalTypeOpProvePredicateGoal, CanonicalTypeOpSubtypeGoal, }; use crate::ty::query::queries; use crate::ty::query::QueryDescription; use crate::ty::subst::SubstsRef; use crate::ty::{self, ParamEnvAnd, Ty, TyCtxt}; use rustc_hir::def_id::{CrateNum, DefId, DefIndex}; use rustc_span::symbol::Symbol; use std::borrow::Cow; fn describe_as_module(def_id: DefId, tcx: TyCtxt<'_>) -> String { if def_id.is_top_level_module() { "top-level module".to_string() } else { format!("module `{}`", tcx.def_path_str(def_id)) } } // Each of these queries corresponds to a function pointer field in the // `Providers` struct for requesting a value of that type, and a method // on `tcx: TyCtxt` (and `tcx.at(span)`) for doing that request in a way // which memoizes and does dep-graph tracking, wrapping around the actual // `Providers` that the driver creates (using several `rustc_*` crates). // // The result type of each query must implement `Clone`, and additionally // `ty::query::values::Value`, which produces an appropriate placeholder // (error) value if the query resulted in a query cycle. // Queries marked with `fatal_cycle` do not need the latter implementation, // as they will raise an fatal error on query cycles instead. rustc_queries! { Other { query trigger_delay_span_bug(key: DefId) -> () { desc { "trigger a delay span bug" } } } Other { // Represents crate as a whole (as distinct from the top-level crate module). // If you call `hir_crate` (e.g., indirectly by calling `tcx.hir().krate()`), // we will have to assume that any change means that you need to be recompiled. // This is because the `hir_crate` query gives you access to all other items. // To avoid this fate, do not call `tcx.hir().krate()`; instead, // prefer wrappers like `tcx.visit_all_items_in_krate()`. query hir_crate(key: CrateNum) -> &'tcx Crate<'tcx> { eval_always no_hash desc { "get the crate HIR" } } /// Records the type of every item. query type_of(key: DefId) -> Ty<'tcx> { cache_on_disk_if { key.is_local() } } /// Maps from the `DefId` of an item (trait/struct/enum/fn) to its /// associated generics. query generics_of(key: DefId) -> &'tcx ty::Generics { cache_on_disk_if { key.is_local() } load_cached(tcx, id) { let generics: Option = tcx.queries.on_disk_cache .try_load_query_result(tcx, id); generics.map(|x| &*tcx.arena.alloc(x)) } } /// Maps from the `DefId` of an item (trait/struct/enum/fn) to the /// predicates (where-clauses) that must be proven true in order /// to reference it. This is almost always the "predicates query" /// that you want. /// /// `predicates_of` builds on `predicates_defined_on` -- in fact, /// it is almost always the same as that query, except for the /// case of traits. For traits, `predicates_of` contains /// an additional `Self: Trait<...>` predicate that users don't /// actually write. This reflects the fact that to invoke the /// trait (e.g., via `Default::default`) you must supply types /// that actually implement the trait. (However, this extra /// predicate gets in the way of some checks, which are intended /// to operate over only the actual where-clauses written by the /// user.) query predicates_of(key: DefId) -> ty::GenericPredicates<'tcx> { cache_on_disk_if { key.is_local() } } query native_libraries(_: CrateNum) -> Lrc> { desc { "looking up the native libraries of a linked crate" } } query lint_levels(_: CrateNum) -> &'tcx LintLevelMap { eval_always desc { "computing the lint levels for items in this crate" } } query parent_module_from_def_id(_: DefId) -> DefId { eval_always } } Codegen { query is_panic_runtime(_: CrateNum) -> bool { fatal_cycle desc { "checking if the crate is_panic_runtime" } } } Codegen { /// Set of all the `DefId`s in this crate that have MIR associated with /// them. This includes all the body owners, but also things like struct /// constructors. query mir_keys(_: CrateNum) -> &'tcx DefIdSet { desc { "getting a list of all mir_keys" } } /// Maps DefId's that have an associated `mir::Body` to the result /// of the MIR const-checking pass. This is the set of qualifs in /// the final value of a `const`. query mir_const_qualif(key: DefId) -> mir::ConstQualifs { desc { |tcx| "const checking `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } } /// Fetch the MIR for a given `DefId` right after it's built - this includes /// unreachable code. query mir_built(_: DefId) -> &'tcx Steal> { desc { "building MIR for" } } /// Fetch the MIR for a given `DefId` up till the point where it is /// ready for const evaluation. /// /// See the README for the `mir` module for details. query mir_const(_: DefId) -> &'tcx Steal> { no_hash } query mir_validated(_: DefId) -> ( &'tcx Steal>, &'tcx Steal>> ) { no_hash } /// MIR after our optimization passes have run. This is MIR that is ready /// for codegen. This is also the only query that can fetch non-local MIR, at present. query optimized_mir(key: DefId) -> &'tcx mir::BodyAndCache<'tcx> { cache_on_disk_if { key.is_local() } load_cached(tcx, id) { let mir: Option> = tcx.queries.on_disk_cache.try_load_query_result(tcx, id); mir.map(|x| { let cache = tcx.arena.alloc(x); cache.ensure_predecessors(); &*cache }) } } query promoted_mir(key: DefId) -> &'tcx IndexVec> { cache_on_disk_if { key.is_local() } load_cached(tcx, id) { let promoted: Option< rustc_index::vec::IndexVec< crate::mir::Promoted, crate::mir::BodyAndCache<'tcx> >> = tcx.queries.on_disk_cache.try_load_query_result(tcx, id); promoted.map(|p| { let cache = tcx.arena.alloc(p); for body in cache.iter_mut() { body.ensure_predecessors(); } &*cache }) } } } TypeChecking { // Erases regions from `ty` to yield a new type. // Normally you would just use `tcx.erase_regions(&value)`, // however, which uses this query as a kind of cache. query erase_regions_ty(ty: Ty<'tcx>) -> Ty<'tcx> { // This query is not expected to have input -- as a result, it // is not a good candidates for "replay" because it is essentially a // pure function of its input (and hence the expectation is that // no caller would be green **apart** from just these // queries). Making it anonymous avoids hashing the result, which // may save a bit of time. anon no_force desc { "erasing regions from `{:?}`", ty } } query program_clauses_for(_: DefId) -> Clauses<'tcx> { desc { "generating chalk-style clauses" } } query program_clauses_for_env(_: traits::Environment<'tcx>) -> Clauses<'tcx> { no_force desc { "generating chalk-style clauses for environment" } } // Get the chalk-style environment of the given item. query environment(_: DefId) -> traits::Environment<'tcx> { desc { "return a chalk-style environment" } } } Linking { query wasm_import_module_map(_: CrateNum) -> &'tcx FxHashMap { desc { "wasm import module map" } } } Other { /// Maps from the `DefId` of an item (trait/struct/enum/fn) to the /// predicates (where-clauses) directly defined on it. This is /// equal to the `explicit_predicates_of` predicates plus the /// `inferred_outlives_of` predicates. query predicates_defined_on(_: DefId) -> ty::GenericPredicates<'tcx> {} /// Returns the predicates written explicitly by the user. query explicit_predicates_of(_: DefId) -> ty::GenericPredicates<'tcx> {} /// Returns the inferred outlives predicates (e.g., for `struct /// Foo<'a, T> { x: &'a T }`, this would return `T: 'a`). query inferred_outlives_of(_: DefId) -> &'tcx [(ty::Predicate<'tcx>, Span)] {} /// Maps from the `DefId` of a trait to the list of /// super-predicates. This is a subset of the full list of /// predicates. We store these in a separate map because we must /// evaluate them even during type conversion, often before the /// full predicates are available (note that supertraits have /// additional acyclicity requirements). query super_predicates_of(key: DefId) -> ty::GenericPredicates<'tcx> { desc { |tcx| "computing the supertraits of `{}`", tcx.def_path_str(key) } } /// To avoid cycles within the predicates of a single item we compute /// per-type-parameter predicates for resolving `T::AssocTy`. query type_param_predicates(key: (DefId, DefId)) -> ty::GenericPredicates<'tcx> { no_force desc { |tcx| "computing the bounds for type parameter `{}`", { let id = tcx.hir().as_local_hir_id(key.1).unwrap(); tcx.hir().ty_param_name(id) }} } query trait_def(_: DefId) -> &'tcx ty::TraitDef {} query adt_def(_: DefId) -> &'tcx ty::AdtDef {} query adt_destructor(_: DefId) -> Option {} // The cycle error here should be reported as an error by `check_representable`. // We consider the type as Sized in the meanwhile to avoid // further errors (done in impl Value for AdtSizedConstraint). // Use `cycle_delay_bug` to delay the cycle error here to be emitted later // in case we accidentally otherwise don't emit an error. query adt_sized_constraint( _: DefId ) -> AdtSizedConstraint<'tcx> { cycle_delay_bug } query adt_dtorck_constraint( _: DefId ) -> Result, NoSolution> {} /// Returns `true` if this is a const fn, use the `is_const_fn` to know whether your crate /// actually sees it as const fn (e.g., the const-fn-ness might be unstable and you might /// not have the feature gate active). /// /// **Do not call this function manually.** It is only meant to cache the base data for the /// `is_const_fn` function. query is_const_fn_raw(key: DefId) -> bool { desc { |tcx| "checking if item is const fn: `{}`", tcx.def_path_str(key) } } /// Returns `true` if this is a const `impl`. **Do not call this function manually.** /// /// This query caches the base data for the `is_const_impl` helper function, which also /// takes into account stability attributes (e.g., `#[rustc_const_unstable]`). query is_const_impl_raw(key: DefId) -> bool { desc { |tcx| "checking if item is const impl: `{}`", tcx.def_path_str(key) } } query asyncness(key: DefId) -> hir::IsAsync { desc { |tcx| "checking if the function is async: `{}`", tcx.def_path_str(key) } } /// Returns `true` if calls to the function may be promoted. /// /// This is either because the function is e.g., a tuple-struct or tuple-variant /// constructor, or because it has the `#[rustc_promotable]` attribute. The attribute should /// be removed in the future in favour of some form of check which figures out whether the /// function does not inspect the bits of any of its arguments (so is essentially just a /// constructor function). query is_promotable_const_fn(_: DefId) -> bool {} query const_fn_is_allowed_fn_ptr(_: DefId) -> bool {} /// Returns `true` if this is a foreign item (i.e., linked via `extern { ... }`). query is_foreign_item(_: DefId) -> bool {} /// Returns `Some(mutability)` if the node pointed to by `def_id` is a static item. query static_mutability(_: DefId) -> Option {} /// Returns `Some(generator_kind)` if the node pointed to by `def_id` is a generator. query generator_kind(_: DefId) -> Option {} /// Gets a map with the variance of every item; use `item_variance` instead. query crate_variances(_: CrateNum) -> &'tcx ty::CrateVariancesMap<'tcx> { desc { "computing the variances for items in this crate" } } /// Maps from the `DefId` of a type or region parameter to its (inferred) variance. query variances_of(_: DefId) -> &'tcx [ty::Variance] {} } TypeChecking { /// Maps from thee `DefId` of a type to its (inferred) outlives. query inferred_outlives_crate(_: CrateNum) -> &'tcx ty::CratePredicatesMap<'tcx> { desc { "computing the inferred outlives predicates for items in this crate" } } } Other { /// Maps from an impl/trait `DefId to a list of the `DefId`s of its items. query associated_item_def_ids(_: DefId) -> &'tcx [DefId] {} /// Maps from a trait item to the trait item "descriptor". query associated_item(_: DefId) -> ty::AssocItem {} /// Collects the associated items defined on a trait or impl. query associated_items(key: DefId) -> &'tcx ty::AssociatedItems { desc { |tcx| "collecting associated items of {}", tcx.def_path_str(key) } } query impl_trait_ref(_: DefId) -> Option> {} query impl_polarity(_: DefId) -> ty::ImplPolarity {} query issue33140_self_ty(_: DefId) -> Option> {} } TypeChecking { /// Maps a `DefId` of a type to a list of its inherent impls. /// Contains implementations of methods that are inherent to a type. /// Methods in these implementations don't need to be exported. query inherent_impls(_: DefId) -> &'tcx [DefId] { eval_always } } TypeChecking { /// The result of unsafety-checking this `DefId`. query unsafety_check_result(key: DefId) -> mir::UnsafetyCheckResult { desc { |tcx| "unsafety-checking `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } } /// HACK: when evaluated, this reports a "unsafe derive on repr(packed)" error query unsafe_derive_on_repr_packed(_: DefId) -> () {} /// The signature of functions and closures. query fn_sig(_: DefId) -> ty::PolyFnSig<'tcx> {} } Other { query lint_mod(key: DefId) -> () { desc { |tcx| "linting {}", describe_as_module(key, tcx) } } /// Checks the attributes in the module. query check_mod_attrs(key: DefId) -> () { desc { |tcx| "checking attributes in {}", describe_as_module(key, tcx) } } query check_mod_unstable_api_usage(key: DefId) -> () { desc { |tcx| "checking for unstable API usage in {}", describe_as_module(key, tcx) } } /// Checks the const bodies in the module for illegal operations (e.g. `if` or `loop`). query check_mod_const_bodies(key: DefId) -> () { desc { |tcx| "checking consts in {}", describe_as_module(key, tcx) } } /// Checks the loops in the module. query check_mod_loops(key: DefId) -> () { desc { |tcx| "checking loops in {}", describe_as_module(key, tcx) } } query check_mod_item_types(key: DefId) -> () { desc { |tcx| "checking item types in {}", describe_as_module(key, tcx) } } query check_mod_privacy(key: DefId) -> () { desc { |tcx| "checking privacy in {}", describe_as_module(key, tcx) } } query check_mod_intrinsics(key: DefId) -> () { desc { |tcx| "checking intrinsics in {}", describe_as_module(key, tcx) } } query check_mod_liveness(key: DefId) -> () { desc { |tcx| "checking liveness of variables in {}", describe_as_module(key, tcx) } } query check_mod_impl_wf(key: DefId) -> () { desc { |tcx| "checking that impls are well-formed in {}", describe_as_module(key, tcx) } } query collect_mod_item_types(key: DefId) -> () { desc { |tcx| "collecting item types in {}", describe_as_module(key, tcx) } } /// Caches `CoerceUnsized` kinds for impls on custom types. query coerce_unsized_info(_: DefId) -> ty::adjustment::CoerceUnsizedInfo {} } TypeChecking { query typeck_item_bodies(_: CrateNum) -> () { desc { "type-checking all item bodies" } } query typeck_tables_of(key: DefId) -> &'tcx ty::TypeckTables<'tcx> { desc { |tcx| "type-checking `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } } query diagnostic_only_typeck_tables_of(key: DefId) -> &'tcx ty::TypeckTables<'tcx> { cache_on_disk_if { key.is_local() } load_cached(tcx, id) { let typeck_tables: Option> = tcx .queries.on_disk_cache .try_load_query_result(tcx, id); typeck_tables.map(|tables| &*tcx.arena.alloc(tables)) } } } Other { query used_trait_imports(key: DefId) -> &'tcx DefIdSet { cache_on_disk_if { key.is_local() } } } TypeChecking { query has_typeck_tables(_: DefId) -> bool {} query coherent_trait(def_id: DefId) -> () { desc { |tcx| "coherence checking all impls of trait `{}`", tcx.def_path_str(def_id) } } } BorrowChecking { /// Borrow-checks the function body. If this is a closure, returns /// additional requirements that the closure's creator must verify. query mir_borrowck(key: DefId) -> &'tcx mir::BorrowCheckResult<'tcx> { desc { |tcx| "borrow-checking `{}`", tcx.def_path_str(key) } cache_on_disk_if(tcx, opt_result) { key.is_local() && (tcx.is_closure(key) || opt_result.map_or(false, |r| !r.concrete_opaque_types.is_empty())) } } } TypeChecking { /// Gets a complete map from all types to their inherent impls. /// Not meant to be used directly outside of coherence. /// (Defined only for `LOCAL_CRATE`.) query crate_inherent_impls(k: CrateNum) -> &'tcx CrateInherentImpls { eval_always desc { "all inherent impls defined in crate `{:?}`", k } } /// Checks all types in the crate for overlap in their inherent impls. Reports errors. /// Not meant to be used directly outside of coherence. /// (Defined only for `LOCAL_CRATE`.) query crate_inherent_impls_overlap_check(_: CrateNum) -> () { eval_always desc { "check for overlap between inherent impls defined in this crate" } } } Other { /// Evaluates a constant without running sanity checks. /// /// **Do not use this** outside const eval. Const eval uses this to break query cycles /// during validation. Please add a comment to every use site explaining why using /// `const_eval_validated` isn't sufficient. The returned constant also isn't in a suitable /// form to be used outside of const eval. query const_eval_raw(key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>) -> ConstEvalRawResult<'tcx> { no_force desc { |tcx| "const-evaluating `{}`", tcx.def_path_str(key.value.instance.def.def_id()) } } /// Results of evaluating const items or constants embedded in /// other items (such as enum variant explicit discriminants). /// /// In contrast to `const_eval_raw` this performs some validation on the constant, and /// returns a proper constant that is usable by the rest of the compiler. /// /// **Do not use this** directly, use one of the following wrappers: `tcx.const_eval_poly`, /// `tcx.const_eval_resolve`, `tcx.const_eval_instance`, or `tcx.const_eval_global_id`. query const_eval_validated(key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>) -> ConstEvalResult<'tcx> { no_force desc { |tcx| "const-evaluating + checking `{}`", tcx.def_path_str(key.value.instance.def.def_id()) } cache_on_disk_if(_, opt_result) { // Only store results without errors opt_result.map_or(true, |r| r.is_ok()) } } /// Extracts a field of a (variant of a) const. query const_field( key: ty::ParamEnvAnd<'tcx, (&'tcx ty::Const<'tcx>, mir::Field)> ) -> ConstValue<'tcx> { no_force desc { "extract field of const" } } /// Destructure a constant ADT or array into its variant indent and its /// field values. query destructure_const( key: ty::ParamEnvAnd<'tcx, &'tcx ty::Const<'tcx>> ) -> mir::DestructuredConst<'tcx> { no_force desc { "destructure constant" } } query const_caller_location(key: (rustc_span::Symbol, u32, u32)) -> ConstValue<'tcx> { no_force desc { "get a &core::panic::Location referring to a span" } } query lit_to_const( key: LitToConstInput<'tcx> ) -> Result<&'tcx ty::Const<'tcx>, LitToConstError> { no_force desc { "converting literal to const" } } } TypeChecking { query check_match(key: DefId) { cache_on_disk_if { key.is_local() } } /// Performs part of the privacy check and computes "access levels". query privacy_access_levels(_: CrateNum) -> &'tcx AccessLevels { eval_always desc { "privacy access levels" } } query check_private_in_public(_: CrateNum) -> () { eval_always desc { "checking for private elements in public interfaces" } } } Other { query reachable_set(_: CrateNum) -> Lrc { desc { "reachability" } } /// Per-body `region::ScopeTree`. The `DefId` should be the owner `DefId` for the body; /// in the case of closures, this will be redirected to the enclosing function. query region_scope_tree(_: DefId) -> &'tcx region::ScopeTree {} query mir_shims(key: ty::InstanceDef<'tcx>) -> &'tcx mir::BodyAndCache<'tcx> { no_force desc { |tcx| "generating MIR shim for `{}`", tcx.def_path_str(key.def_id()) } } /// The `symbol_name` query provides the symbol name for calling a /// given instance from the local crate. In particular, it will also /// look up the correct symbol name of instances from upstream crates. query symbol_name(key: ty::Instance<'tcx>) -> ty::SymbolName { no_force desc { "computing the symbol for `{}`", key } cache_on_disk_if { true } } query def_kind(_: DefId) -> Option {} query def_span(_: DefId) -> Span { // FIXME(mw): DefSpans are not really inputs since they are derived from // HIR. But at the moment HIR hashing still contains some hacks that allow // to make type debuginfo to be source location independent. Declaring // DefSpan an input makes sure that changes to these are always detected // regardless of HIR hashing. eval_always } query lookup_stability(_: DefId) -> Option<&'tcx attr::Stability> {} query lookup_const_stability(_: DefId) -> Option<&'tcx attr::ConstStability> {} query lookup_deprecation_entry(_: DefId) -> Option {} query item_attrs(_: DefId) -> Lrc<[ast::Attribute]> {} } Codegen { query codegen_fn_attrs(_: DefId) -> CodegenFnAttrs { cache_on_disk_if { true } } } Other { query fn_arg_names(_: DefId) -> Vec {} /// Gets the rendered value of the specified constant or associated constant. /// Used by rustdoc. query rendered_const(_: DefId) -> String {} query impl_parent(_: DefId) -> Option {} } TypeChecking { query trait_of_item(_: DefId) -> Option {} } Codegen { query is_mir_available(key: DefId) -> bool { desc { |tcx| "checking if item has mir available: `{}`", tcx.def_path_str(key) } } } Other { query vtable_methods(key: ty::PolyTraitRef<'tcx>) -> &'tcx [Option<(DefId, SubstsRef<'tcx>)>] { no_force desc { |tcx| "finding all methods for trait {}", tcx.def_path_str(key.def_id()) } } } Codegen { query codegen_fulfill_obligation( key: (ty::ParamEnv<'tcx>, ty::PolyTraitRef<'tcx>) ) -> Option> { no_force cache_on_disk_if { true } desc { |tcx| "checking if `{}` fulfills its obligations", tcx.def_path_str(key.1.def_id()) } } } TypeChecking { query trait_impls_of(key: DefId) -> &'tcx ty::trait_def::TraitImpls { desc { |tcx| "trait impls of `{}`", tcx.def_path_str(key) } } query specialization_graph_of(key: DefId) -> &'tcx specialization_graph::Graph { desc { |tcx| "building specialization graph of trait `{}`", tcx.def_path_str(key) } cache_on_disk_if { true } } query object_safety_violations(key: DefId) -> Vec { desc { |tcx| "determine object safety of trait `{}`", tcx.def_path_str(key) } } /// Gets the ParameterEnvironment for a given item; this environment /// will be in "user-facing" mode, meaning that it is suitabe for /// type-checking etc, and it does not normalize specializable /// associated types. This is almost always what you want, /// unless you are doing MIR optimizations, in which case you /// might want to use `reveal_all()` method to change modes. query param_env(_: DefId) -> ty::ParamEnv<'tcx> {} /// Trait selection queries. These are best used by invoking `ty.is_copy_modulo_regions()`, /// `ty.is_copy()`, etc, since that will prune the environment where possible. query is_copy_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool { no_force desc { "computing whether `{}` is `Copy`", env.value } } /// Query backing `TyS::is_sized`. query is_sized_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool { no_force desc { "computing whether `{}` is `Sized`", env.value } } /// Query backing `TyS::is_freeze`. query is_freeze_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool { no_force desc { "computing whether `{}` is freeze", env.value } } /// Query backing `TyS::needs_drop`. query needs_drop_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool { no_force desc { "computing whether `{}` needs drop", env.value } } /// A list of types where the ADT requires drop if and only if any of /// those types require drop. If the ADT is known to always need drop /// then `Err(AlwaysRequiresDrop)` is returned. query adt_drop_tys(_: DefId) -> Result<&'tcx ty::List>, AlwaysRequiresDrop> { cache_on_disk_if { true } } query layout_raw( env: ty::ParamEnvAnd<'tcx, Ty<'tcx>> ) -> Result<&'tcx ty::layout::LayoutDetails, ty::layout::LayoutError<'tcx>> { no_force desc { "computing layout of `{}`", env.value } } } Other { query dylib_dependency_formats(_: CrateNum) -> &'tcx [(CrateNum, LinkagePreference)] { desc { "dylib dependency formats of crate" } } query dependency_formats(_: CrateNum) -> Lrc { desc { "get the linkage format of all dependencies" } } } Codegen { query is_compiler_builtins(_: CrateNum) -> bool { fatal_cycle desc { "checking if the crate is_compiler_builtins" } } query has_global_allocator(_: CrateNum) -> bool { fatal_cycle desc { "checking if the crate has_global_allocator" } } query has_panic_handler(_: CrateNum) -> bool { fatal_cycle desc { "checking if the crate has_panic_handler" } } query is_profiler_runtime(_: CrateNum) -> bool { fatal_cycle desc { "query a crate is `#![profiler_runtime]`" } } query panic_strategy(_: CrateNum) -> PanicStrategy { fatal_cycle desc { "query a crate's configured panic strategy" } } query is_no_builtins(_: CrateNum) -> bool { fatal_cycle desc { "test whether a crate has `#![no_builtins]`" } } query symbol_mangling_version(_: CrateNum) -> SymbolManglingVersion { fatal_cycle desc { "query a crate's symbol mangling version" } } query extern_crate(_: DefId) -> Option<&'tcx ExternCrate> { eval_always desc { "getting crate's ExternCrateData" } } } TypeChecking { query specializes(_: (DefId, DefId)) -> bool { no_force desc { "computing whether impls specialize one another" } } query in_scope_traits_map(_: DefIndex) -> Option<&'tcx FxHashMap>> { eval_always desc { "traits in scope at a block" } } } Other { query module_exports(_: DefId) -> Option<&'tcx [Export]> { eval_always } } TypeChecking { query impl_defaultness(_: DefId) -> hir::Defaultness {} query check_item_well_formed(_: DefId) -> () {} query check_trait_item_well_formed(_: DefId) -> () {} query check_impl_item_well_formed(_: DefId) -> () {} } Linking { // The `DefId`s of all non-generic functions and statics in the given crate // that can be reached from outside the crate. // // We expect this items to be available for being linked to. // // This query can also be called for `LOCAL_CRATE`. In this case it will // compute which items will be reachable to other crates, taking into account // the kind of crate that is currently compiled. Crates with only a // C interface have fewer reachable things. // // Does not include external symbols that don't have a corresponding DefId, // like the compiler-generated `main` function and so on. query reachable_non_generics(_: CrateNum) -> &'tcx DefIdMap { desc { "looking up the exported symbols of a crate" } } query is_reachable_non_generic(_: DefId) -> bool {} query is_unreachable_local_definition(_: DefId) -> bool {} } Codegen { /// The entire set of monomorphizations the local crate can safely link /// to because they are exported from upstream crates. Do not depend on /// this directly, as its value changes anytime a monomorphization gets /// added or removed in any upstream crate. Instead use the narrower /// `upstream_monomorphizations_for`, `upstream_drop_glue_for`, or, even /// better, `Instance::upstream_monomorphization()`. query upstream_monomorphizations( k: CrateNum ) -> &'tcx DefIdMap, CrateNum>> { desc { "collecting available upstream monomorphizations `{:?}`", k } } /// Returns the set of upstream monomorphizations available for the /// generic function identified by the given `def_id`. The query makes /// sure to make a stable selection if the same monomorphization is /// available in multiple upstream crates. /// /// You likely want to call `Instance::upstream_monomorphization()` /// instead of invoking this query directly. query upstream_monomorphizations_for(_: DefId) -> Option<&'tcx FxHashMap, CrateNum>> {} /// Returns the upstream crate that exports drop-glue for the given /// type (`substs` is expected to be a single-item list containing the /// type one wants drop-glue for). /// /// This is a subset of `upstream_monomorphizations_for` in order to /// increase dep-tracking granularity. Otherwise adding or removing any /// type with drop-glue in any upstream crate would invalidate all /// functions calling drop-glue of an upstream type. /// /// You likely want to call `Instance::upstream_monomorphization()` /// instead of invoking this query directly. /// /// NOTE: This query could easily be extended to also support other /// common functions that have are large set of monomorphizations /// (like `Clone::clone` for example). query upstream_drop_glue_for(substs: SubstsRef<'tcx>) -> Option { desc { "available upstream drop-glue for `{:?}`", substs } no_force } } Other { query foreign_modules(_: CrateNum) -> &'tcx [ForeignModule] { desc { "looking up the foreign modules of a linked crate" } } /// Identifies the entry-point (e.g., the `main` function) for a given /// crate, returning `None` if there is no entry point (such as for library crates). query entry_fn(_: CrateNum) -> Option<(DefId, EntryFnType)> { desc { "looking up the entry function of a crate" } } query plugin_registrar_fn(_: CrateNum) -> Option { desc { "looking up the plugin registrar for a crate" } } query proc_macro_decls_static(_: CrateNum) -> Option { desc { "looking up the derive registrar for a crate" } } query crate_disambiguator(_: CrateNum) -> CrateDisambiguator { eval_always desc { "looking up the disambiguator a crate" } } query crate_hash(_: CrateNum) -> Svh { eval_always desc { "looking up the hash a crate" } } query crate_host_hash(_: CrateNum) -> Option { eval_always desc { "looking up the hash of a host version of a crate" } } query original_crate_name(_: CrateNum) -> Symbol { eval_always desc { "looking up the original name a crate" } } query extra_filename(_: CrateNum) -> String { eval_always desc { "looking up the extra filename for a crate" } } } TypeChecking { query implementations_of_trait(_: (CrateNum, DefId)) -> &'tcx [DefId] { no_force desc { "looking up implementations of a trait in a crate" } } query all_trait_implementations(_: CrateNum) -> &'tcx [DefId] { desc { "looking up all (?) trait implementations" } } } Other { query dllimport_foreign_items(_: CrateNum) -> &'tcx FxHashSet { desc { "dllimport_foreign_items" } } query is_dllimport_foreign_item(_: DefId) -> bool {} query is_statically_included_foreign_item(_: DefId) -> bool {} query native_library_kind(_: DefId) -> Option {} } Linking { query link_args(_: CrateNum) -> Lrc> { eval_always desc { "looking up link arguments for a crate" } } } BorrowChecking { /// Lifetime resolution. See `middle::resolve_lifetimes`. query resolve_lifetimes(_: CrateNum) -> &'tcx ResolveLifetimes { desc { "resolving lifetimes" } } query named_region_map(_: DefIndex) -> Option<&'tcx FxHashMap> { desc { "looking up a named region" } } query is_late_bound_map(_: DefIndex) -> Option<&'tcx FxHashSet> { desc { "testing if a region is late bound" } } query object_lifetime_defaults_map(_: DefIndex) -> Option<&'tcx FxHashMap>> { desc { "looking up lifetime defaults for a region" } } } TypeChecking { query visibility(_: DefId) -> ty::Visibility {} } Other { query dep_kind(_: CrateNum) -> DepKind { eval_always desc { "fetching what a dependency looks like" } } query crate_name(_: CrateNum) -> Symbol { eval_always desc { "fetching what a crate is named" } } query item_children(_: DefId) -> &'tcx [Export] {} query extern_mod_stmt_cnum(_: DefId) -> Option {} query get_lib_features(_: CrateNum) -> &'tcx LibFeatures { eval_always desc { "calculating the lib features map" } } query defined_lib_features(_: CrateNum) -> &'tcx [(Symbol, Option)] { desc { "calculating the lib features defined in a crate" } } /// Returns the lang items defined in another crate by loading it from metadata. // FIXME: It is illegal to pass a `CrateNum` other than `LOCAL_CRATE` here, just get rid // of that argument? query get_lang_items(_: CrateNum) -> &'tcx LanguageItems { eval_always desc { "calculating the lang items map" } } /// Returns all diagnostic items defined in all crates. query all_diagnostic_items(_: CrateNum) -> &'tcx FxHashMap { eval_always desc { "calculating the diagnostic items map" } } /// Returns the lang items defined in another crate by loading it from metadata. query defined_lang_items(_: CrateNum) -> &'tcx [(DefId, usize)] { desc { "calculating the lang items defined in a crate" } } /// Returns the diagnostic items defined in a crate. query diagnostic_items(_: CrateNum) -> &'tcx FxHashMap { desc { "calculating the diagnostic items map in a crate" } } query missing_lang_items(_: CrateNum) -> &'tcx [LangItem] { desc { "calculating the missing lang items in a crate" } } query visible_parent_map(_: CrateNum) -> &'tcx DefIdMap { desc { "calculating the visible parent map" } } query missing_extern_crate_item(_: CrateNum) -> bool { eval_always desc { "seeing if we're missing an `extern crate` item for this crate" } } query used_crate_source(_: CrateNum) -> Lrc { eval_always desc { "looking at the source for a crate" } } query postorder_cnums(_: CrateNum) -> &'tcx [CrateNum] { eval_always desc { "generating a postorder list of CrateNums" } } query upvars(_: DefId) -> Option<&'tcx FxIndexMap> { eval_always } query maybe_unused_trait_import(_: DefId) -> bool { eval_always } query maybe_unused_extern_crates(_: CrateNum) -> &'tcx [(DefId, Span)] { eval_always desc { "looking up all possibly unused extern crates" } } query names_imported_by_glob_use(_: DefId) -> Lrc> { eval_always } query stability_index(_: CrateNum) -> &'tcx stability::Index<'tcx> { eval_always desc { "calculating the stability index for the local crate" } } query all_crate_nums(_: CrateNum) -> &'tcx [CrateNum] { eval_always desc { "fetching all foreign CrateNum instances" } } /// A vector of every trait accessible in the whole crate /// (i.e., including those from subcrates). This is used only for /// error reporting. query all_traits(_: CrateNum) -> &'tcx [DefId] { desc { "fetching all foreign and local traits" } } } Linking { /// The list of symbols exported from the given crate. /// /// - All names contained in `exported_symbols(cnum)` are guaranteed to /// correspond to a publicly visible symbol in `cnum` machine code. /// - The `exported_symbols` sets of different crates do not intersect. query exported_symbols(_: CrateNum) -> Arc, SymbolExportLevel)>> { desc { "exported_symbols" } } } Codegen { query collect_and_partition_mono_items(_: CrateNum) -> (Arc, Arc>>>) { eval_always desc { "collect_and_partition_mono_items" } } query is_codegened_item(_: DefId) -> bool {} query codegen_unit(_: Symbol) -> Arc> { no_force desc { "codegen_unit" } } query backend_optimization_level(_: CrateNum) -> OptLevel { desc { "optimization level used by backend" } } } Other { query output_filenames(_: CrateNum) -> Arc { eval_always desc { "output_filenames" } } } TypeChecking { /// Do not call this query directly: invoke `normalize` instead. query normalize_projection_ty( goal: CanonicalProjectionGoal<'tcx> ) -> Result< &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, NormalizationResult<'tcx>>>, NoSolution, > { no_force desc { "normalizing `{:?}`", goal } } /// Do not call this query directly: invoke `normalize_erasing_regions` instead. query normalize_ty_after_erasing_regions( goal: ParamEnvAnd<'tcx, Ty<'tcx>> ) -> Ty<'tcx> { no_force desc { "normalizing `{:?}`", goal } } query implied_outlives_bounds( goal: CanonicalTyGoal<'tcx> ) -> Result< &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, Vec>>>, NoSolution, > { no_force desc { "computing implied outlives bounds for `{:?}`", goal } } /// Do not call this query directly: invoke `infcx.at().dropck_outlives()` instead. query dropck_outlives( goal: CanonicalTyGoal<'tcx> ) -> Result< &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, DropckOutlivesResult<'tcx>>>, NoSolution, > { no_force desc { "computing dropck types for `{:?}`", goal } } /// Do not call this query directly: invoke `infcx.predicate_may_hold()` or /// `infcx.predicate_must_hold()` instead. query evaluate_obligation( goal: CanonicalPredicateGoal<'tcx> ) -> Result { no_force desc { "evaluating trait selection obligation `{}`", goal.value.value } } /// Do not call this query directly: part of the `Eq` type-op query type_op_ascribe_user_type( goal: CanonicalTypeOpAscribeUserTypeGoal<'tcx> ) -> Result< &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ()>>, NoSolution, > { no_force desc { "evaluating `type_op_ascribe_user_type` `{:?}`", goal } } /// Do not call this query directly: part of the `Eq` type-op query type_op_eq( goal: CanonicalTypeOpEqGoal<'tcx> ) -> Result< &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ()>>, NoSolution, > { no_force desc { "evaluating `type_op_eq` `{:?}`", goal } } /// Do not call this query directly: part of the `Subtype` type-op query type_op_subtype( goal: CanonicalTypeOpSubtypeGoal<'tcx> ) -> Result< &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ()>>, NoSolution, > { no_force desc { "evaluating `type_op_subtype` `{:?}`", goal } } /// Do not call this query directly: part of the `ProvePredicate` type-op query type_op_prove_predicate( goal: CanonicalTypeOpProvePredicateGoal<'tcx> ) -> Result< &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ()>>, NoSolution, > { no_force desc { "evaluating `type_op_prove_predicate` `{:?}`", goal } } /// Do not call this query directly: part of the `Normalize` type-op query type_op_normalize_ty( goal: CanonicalTypeOpNormalizeGoal<'tcx, Ty<'tcx>> ) -> Result< &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, Ty<'tcx>>>, NoSolution, > { no_force desc { "normalizing `{:?}`", goal } } /// Do not call this query directly: part of the `Normalize` type-op query type_op_normalize_predicate( goal: CanonicalTypeOpNormalizeGoal<'tcx, ty::Predicate<'tcx>> ) -> Result< &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ty::Predicate<'tcx>>>, NoSolution, > { no_force desc { "normalizing `{:?}`", goal } } /// Do not call this query directly: part of the `Normalize` type-op query type_op_normalize_poly_fn_sig( goal: CanonicalTypeOpNormalizeGoal<'tcx, ty::PolyFnSig<'tcx>> ) -> Result< &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ty::PolyFnSig<'tcx>>>, NoSolution, > { no_force desc { "normalizing `{:?}`", goal } } /// Do not call this query directly: part of the `Normalize` type-op query type_op_normalize_fn_sig( goal: CanonicalTypeOpNormalizeGoal<'tcx, ty::FnSig<'tcx>> ) -> Result< &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ty::FnSig<'tcx>>>, NoSolution, > { no_force desc { "normalizing `{:?}`", goal } } query substitute_normalize_and_test_predicates(key: (DefId, SubstsRef<'tcx>)) -> bool { no_force desc { |tcx| "testing substituted normalized predicates:`{}`", tcx.def_path_str(key.0) } } query method_autoderef_steps( goal: CanonicalTyGoal<'tcx> ) -> MethodAutoderefStepsResult<'tcx> { no_force desc { "computing autoderef types for `{:?}`", goal } } } Other { query target_features_whitelist(_: CrateNum) -> &'tcx FxHashMap> { eval_always desc { "looking up the whitelist of target features" } } // Get an estimate of the size of an InstanceDef based on its MIR for CGU partitioning. query instance_def_size_estimate(def: ty::InstanceDef<'tcx>) -> usize { no_force desc { |tcx| "estimating size for `{}`", tcx.def_path_str(def.def_id()) } } query features_query(_: CrateNum) -> &'tcx rustc_feature::Features { eval_always desc { "looking up enabled feature gates" } } } }