use crate::hir; use crate::hir::def_id::DefId; use crate::traits::specialize::specialization_graph::NodeItem; use crate::ty::{self, Ty, TyCtxt, ToPredicate, ToPolyTraitRef}; use crate::ty::outlives::Component; use crate::ty::subst::{Kind, Subst, SubstsRef}; use crate::util::nodemap::FxHashSet; use super::{Obligation, ObligationCause, PredicateObligation, SelectionContext, Normalized}; fn anonymize_predicate<'a, 'gcx, 'tcx>(tcx: TyCtxt<'a, 'gcx, 'tcx>, pred: &ty::Predicate<'tcx>) -> ty::Predicate<'tcx> { match *pred { ty::Predicate::Trait(ref data) => ty::Predicate::Trait(tcx.anonymize_late_bound_regions(data)), ty::Predicate::RegionOutlives(ref data) => ty::Predicate::RegionOutlives(tcx.anonymize_late_bound_regions(data)), ty::Predicate::TypeOutlives(ref data) => ty::Predicate::TypeOutlives(tcx.anonymize_late_bound_regions(data)), ty::Predicate::Projection(ref data) => ty::Predicate::Projection(tcx.anonymize_late_bound_regions(data)), ty::Predicate::WellFormed(data) => ty::Predicate::WellFormed(data), ty::Predicate::ObjectSafe(data) => ty::Predicate::ObjectSafe(data), ty::Predicate::ClosureKind(closure_def_id, closure_substs, kind) => ty::Predicate::ClosureKind(closure_def_id, closure_substs, kind), ty::Predicate::Subtype(ref data) => ty::Predicate::Subtype(tcx.anonymize_late_bound_regions(data)), ty::Predicate::ConstEvaluatable(def_id, substs) => ty::Predicate::ConstEvaluatable(def_id, substs), } } struct PredicateSet<'a, 'gcx: 'a+'tcx, 'tcx: 'a> { tcx: TyCtxt<'a, 'gcx, 'tcx>, set: FxHashSet>, } impl<'a, 'gcx, 'tcx> PredicateSet<'a, 'gcx, 'tcx> { fn new(tcx: TyCtxt<'a, 'gcx, 'tcx>) -> PredicateSet<'a, 'gcx, 'tcx> { PredicateSet { tcx: tcx, set: Default::default() } } fn insert(&mut self, pred: &ty::Predicate<'tcx>) -> bool { // We have to be careful here because we want // // for<'a> Foo<&'a int> // // and // // for<'b> Foo<&'b int> // // to be considered equivalent. So normalize all late-bound // regions before we throw things into the underlying set. self.set.insert(anonymize_predicate(self.tcx, pred)) } } /////////////////////////////////////////////////////////////////////////// // `Elaboration` iterator /////////////////////////////////////////////////////////////////////////// /// "Elaboration" is the process of identifying all the predicates that /// are implied by a source predicate. Currently this basically means /// walking the "supertraits" and other similar assumptions. For /// example, if we know that `T : Ord`, the elaborator would deduce /// that `T : PartialOrd` holds as well. Similarly, if we have `trait /// Foo : 'static`, and we know that `T : Foo`, then we know that `T : /// 'static`. pub struct Elaborator<'a, 'gcx: 'a+'tcx, 'tcx: 'a> { stack: Vec>, visited: PredicateSet<'a, 'gcx, 'tcx>, } pub fn elaborate_trait_ref<'cx, 'gcx, 'tcx>( tcx: TyCtxt<'cx, 'gcx, 'tcx>, trait_ref: ty::PolyTraitRef<'tcx>) -> Elaborator<'cx, 'gcx, 'tcx> { elaborate_predicates(tcx, vec![trait_ref.to_predicate()]) } pub fn elaborate_trait_refs<'cx, 'gcx, 'tcx>( tcx: TyCtxt<'cx, 'gcx, 'tcx>, trait_refs: impl Iterator>) -> Elaborator<'cx, 'gcx, 'tcx> { let predicates = trait_refs.map(|trait_ref| trait_ref.to_predicate()) .collect(); elaborate_predicates(tcx, predicates) } pub fn elaborate_predicates<'cx, 'gcx, 'tcx>( tcx: TyCtxt<'cx, 'gcx, 'tcx>, mut predicates: Vec>) -> Elaborator<'cx, 'gcx, 'tcx> { let mut visited = PredicateSet::new(tcx); predicates.retain(|pred| visited.insert(pred)); Elaborator { stack: predicates, visited: visited } } impl<'cx, 'gcx, 'tcx> Elaborator<'cx, 'gcx, 'tcx> { pub fn filter_to_traits(self) -> FilterToTraits { FilterToTraits::new(self) } fn push(&mut self, predicate: &ty::Predicate<'tcx>) { let tcx = self.visited.tcx; match *predicate { ty::Predicate::Trait(ref data) => { // Predicates declared on the trait. let predicates = tcx.super_predicates_of(data.def_id()); let mut predicates: Vec<_> = predicates.predicates .iter() .map(|(p, _)| p.subst_supertrait(tcx, &data.to_poly_trait_ref())) .collect(); debug!("super_predicates: data={:?} predicates={:?}", data, predicates); // Only keep those bounds that we haven't already // seen. This is necessary to prevent infinite // recursion in some cases. One common case is when // people define `trait Sized: Sized { }` rather than `trait // Sized { }`. predicates.retain(|r| self.visited.insert(r)); self.stack.extend(predicates); } ty::Predicate::WellFormed(..) => { // Currently, we do not elaborate WF predicates, // although we easily could. } ty::Predicate::ObjectSafe(..) => { // Currently, we do not elaborate object-safe // predicates. } ty::Predicate::Subtype(..) => { // Currently, we do not "elaborate" predicates like `X // <: Y`, though conceivably we might. } ty::Predicate::Projection(..) => { // Nothing to elaborate in a projection predicate. } ty::Predicate::ClosureKind(..) => { // Nothing to elaborate when waiting for a closure's kind to be inferred. } ty::Predicate::ConstEvaluatable(..) => { // Currently, we do not elaborate const-evaluatable // predicates. } ty::Predicate::RegionOutlives(..) => { // Nothing to elaborate from `'a: 'b`. } ty::Predicate::TypeOutlives(ref data) => { // We know that `T: 'a` for some type `T`. We can // often elaborate this. For example, if we know that // `[U]: 'a`, that implies that `U: 'a`. Similarly, if // we know `&'a U: 'b`, then we know that `'a: 'b` and // `U: 'b`. // // We can basically ignore bound regions here. So for // example `for<'c> Foo<'a,'c>: 'b` can be elaborated to // `'a: 'b`. // Ignore `for<'a> T: 'a` -- we might in the future // consider this as evidence that `T: 'static`, but // I'm a bit wary of such constructions and so for now // I want to be conservative. --nmatsakis let ty_max = data.skip_binder().0; let r_min = data.skip_binder().1; if r_min.is_late_bound() { return; } let visited = &mut self.visited; let mut components = smallvec![]; tcx.push_outlives_components(ty_max, &mut components); self.stack.extend( components .into_iter() .filter_map(|component| match component { Component::Region(r) => if r.is_late_bound() { None } else { Some(ty::Predicate::RegionOutlives( ty::Binder::dummy(ty::OutlivesPredicate(r, r_min)))) }, Component::Param(p) => { let ty = tcx.mk_ty_param(p.idx, p.name); Some(ty::Predicate::TypeOutlives( ty::Binder::dummy(ty::OutlivesPredicate(ty, r_min)))) }, Component::UnresolvedInferenceVariable(_) => { None }, Component::Projection(_) | Component::EscapingProjection(_) => { // We can probably do more here. This // corresponds to a case like `>::U: 'b`. None }, }) .filter(|p| visited.insert(p))); } } } } impl<'cx, 'gcx, 'tcx> Iterator for Elaborator<'cx, 'gcx, 'tcx> { type Item = ty::Predicate<'tcx>; fn size_hint(&self) -> (usize, Option) { (self.stack.len(), None) } fn next(&mut self) -> Option> { // Extract next item from top-most stack frame, if any. let next_predicate = match self.stack.pop() { Some(predicate) => predicate, None => { // No more stack frames. Done. return None; } }; self.push(&next_predicate); return Some(next_predicate); } } /////////////////////////////////////////////////////////////////////////// // Supertrait iterator /////////////////////////////////////////////////////////////////////////// pub type Supertraits<'cx, 'gcx, 'tcx> = FilterToTraits>; pub fn supertraits<'cx, 'gcx, 'tcx>(tcx: TyCtxt<'cx, 'gcx, 'tcx>, trait_ref: ty::PolyTraitRef<'tcx>) -> Supertraits<'cx, 'gcx, 'tcx> { elaborate_trait_ref(tcx, trait_ref).filter_to_traits() } pub fn transitive_bounds<'cx, 'gcx, 'tcx>(tcx: TyCtxt<'cx, 'gcx, 'tcx>, bounds: impl Iterator>) -> Supertraits<'cx, 'gcx, 'tcx> { elaborate_trait_refs(tcx, bounds).filter_to_traits() } /////////////////////////////////////////////////////////////////////////// // Iterator over def-ids of supertraits pub struct SupertraitDefIds<'a, 'gcx: 'a+'tcx, 'tcx: 'a> { tcx: TyCtxt<'a, 'gcx, 'tcx>, stack: Vec, visited: FxHashSet, } pub fn supertrait_def_ids<'cx, 'gcx, 'tcx>(tcx: TyCtxt<'cx, 'gcx, 'tcx>, trait_def_id: DefId) -> SupertraitDefIds<'cx, 'gcx, 'tcx> { SupertraitDefIds { tcx, stack: vec![trait_def_id], visited: Some(trait_def_id).into_iter().collect(), } } impl<'cx, 'gcx, 'tcx> Iterator for SupertraitDefIds<'cx, 'gcx, 'tcx> { type Item = DefId; fn next(&mut self) -> Option { let def_id = self.stack.pop()?; let predicates = self.tcx.super_predicates_of(def_id); let visited = &mut self.visited; self.stack.extend( predicates.predicates .iter() .filter_map(|(p, _)| p.to_opt_poly_trait_ref()) .map(|t| t.def_id()) .filter(|&super_def_id| visited.insert(super_def_id))); Some(def_id) } } /////////////////////////////////////////////////////////////////////////// // Other /////////////////////////////////////////////////////////////////////////// /// A filter around an iterator of predicates that makes it yield up /// just trait references. pub struct FilterToTraits { base_iterator: I } impl FilterToTraits { fn new(base: I) -> FilterToTraits { FilterToTraits { base_iterator: base } } } impl<'tcx, I: Iterator>> Iterator for FilterToTraits { type Item = ty::PolyTraitRef<'tcx>; fn next(&mut self) -> Option> { loop { match self.base_iterator.next() { None => { return None; } Some(ty::Predicate::Trait(data)) => { return Some(data.to_poly_trait_ref()); } Some(_) => {} } } } fn size_hint(&self) -> (usize, Option) { let (_, upper) = self.base_iterator.size_hint(); (0, upper) } } /////////////////////////////////////////////////////////////////////////// // Other /////////////////////////////////////////////////////////////////////////// /// Instantiate all bound parameters of the impl with the given substs, /// returning the resulting trait ref and all obligations that arise. /// The obligations are closed under normalization. pub fn impl_trait_ref_and_oblig<'a, 'gcx, 'tcx>(selcx: &mut SelectionContext<'a, 'gcx, 'tcx>, param_env: ty::ParamEnv<'tcx>, impl_def_id: DefId, impl_substs: SubstsRef<'tcx>,) -> (ty::TraitRef<'tcx>, Vec>) { let impl_trait_ref = selcx.tcx().impl_trait_ref(impl_def_id).unwrap(); let impl_trait_ref = impl_trait_ref.subst(selcx.tcx(), impl_substs); let Normalized { value: impl_trait_ref, obligations: normalization_obligations1 } = super::normalize(selcx, param_env, ObligationCause::dummy(), &impl_trait_ref); let predicates = selcx.tcx().predicates_of(impl_def_id); let predicates = predicates.instantiate(selcx.tcx(), impl_substs); let Normalized { value: predicates, obligations: normalization_obligations2 } = super::normalize(selcx, param_env, ObligationCause::dummy(), &predicates); let impl_obligations = predicates_for_generics(ObligationCause::dummy(), 0, param_env, &predicates); let impl_obligations: Vec<_> = impl_obligations.into_iter() .chain(normalization_obligations1) .chain(normalization_obligations2) .collect(); (impl_trait_ref, impl_obligations) } /// See `super::obligations_for_generics` pub fn predicates_for_generics<'tcx>(cause: ObligationCause<'tcx>, recursion_depth: usize, param_env: ty::ParamEnv<'tcx>, generic_bounds: &ty::InstantiatedPredicates<'tcx>) -> Vec> { debug!("predicates_for_generics(generic_bounds={:?})", generic_bounds); generic_bounds.predicates.iter().map(|predicate| { Obligation { cause: cause.clone(), recursion_depth, param_env, predicate: predicate.clone() } }).collect() } pub fn predicate_for_trait_ref<'tcx>( cause: ObligationCause<'tcx>, param_env: ty::ParamEnv<'tcx>, trait_ref: ty::TraitRef<'tcx>, recursion_depth: usize) -> PredicateObligation<'tcx> { Obligation { cause, param_env, recursion_depth, predicate: trait_ref.to_predicate(), } } impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> { pub fn predicate_for_trait_def(self, param_env: ty::ParamEnv<'tcx>, cause: ObligationCause<'tcx>, trait_def_id: DefId, recursion_depth: usize, self_ty: Ty<'tcx>, params: &[Kind<'tcx>]) -> PredicateObligation<'tcx> { let trait_ref = ty::TraitRef { def_id: trait_def_id, substs: self.mk_substs_trait(self_ty, params) }; predicate_for_trait_ref(cause, param_env, trait_ref, recursion_depth) } /// Cast a trait reference into a reference to one of its super /// traits; returns `None` if `target_trait_def_id` is not a /// supertrait. pub fn upcast_choices(self, source_trait_ref: ty::PolyTraitRef<'tcx>, target_trait_def_id: DefId) -> Vec> { if source_trait_ref.def_id() == target_trait_def_id { return vec![source_trait_ref]; // shorcut the most common case } supertraits(self, source_trait_ref) .filter(|r| r.def_id() == target_trait_def_id) .collect() } /// Given a trait `trait_ref`, returns the number of vtable entries /// that come from `trait_ref`, excluding its supertraits. Used in /// computing the vtable base for an upcast trait of a trait object. pub fn count_own_vtable_entries(self, trait_ref: ty::PolyTraitRef<'tcx>) -> usize { let mut entries = 0; // Count number of methods and add them to the total offset. // Skip over associated types and constants. for trait_item in self.associated_items(trait_ref.def_id()) { if trait_item.kind == ty::AssociatedKind::Method { entries += 1; } } entries } /// Given an upcast trait object described by `object`, returns the /// index of the method `method_def_id` (which should be part of /// `object.upcast_trait_ref`) within the vtable for `object`. pub fn get_vtable_index_of_object_method(self, object: &super::VtableObjectData<'tcx, N>, method_def_id: DefId) -> usize { // Count number of methods preceding the one we are selecting and // add them to the total offset. // Skip over associated types and constants. let mut entries = object.vtable_base; for trait_item in self.associated_items(object.upcast_trait_ref.def_id()) { if trait_item.def_id == method_def_id { // The item with the ID we were given really ought to be a method. assert_eq!(trait_item.kind, ty::AssociatedKind::Method); return entries; } if trait_item.kind == ty::AssociatedKind::Method { entries += 1; } } bug!("get_vtable_index_of_object_method: {:?} was not found", method_def_id); } pub fn closure_trait_ref_and_return_type(self, fn_trait_def_id: DefId, self_ty: Ty<'tcx>, sig: ty::PolyFnSig<'tcx>, tuple_arguments: TupleArgumentsFlag) -> ty::Binder<(ty::TraitRef<'tcx>, Ty<'tcx>)> { let arguments_tuple = match tuple_arguments { TupleArgumentsFlag::No => sig.skip_binder().inputs()[0], TupleArgumentsFlag::Yes => self.intern_tup(sig.skip_binder().inputs()), }; let trait_ref = ty::TraitRef { def_id: fn_trait_def_id, substs: self.mk_substs_trait(self_ty, &[arguments_tuple.into()]), }; ty::Binder::bind((trait_ref, sig.skip_binder().output())) } pub fn generator_trait_ref_and_outputs(self, fn_trait_def_id: DefId, self_ty: Ty<'tcx>, sig: ty::PolyGenSig<'tcx>) -> ty::Binder<(ty::TraitRef<'tcx>, Ty<'tcx>, Ty<'tcx>)> { let trait_ref = ty::TraitRef { def_id: fn_trait_def_id, substs: self.mk_substs_trait(self_ty, &[]), }; ty::Binder::bind((trait_ref, sig.skip_binder().yield_ty, sig.skip_binder().return_ty)) } pub fn impl_is_default(self, node_item_def_id: DefId) -> bool { match self.hir().as_local_hir_id(node_item_def_id) { Some(hir_id) => { let item = self.hir().expect_item_by_hir_id(hir_id); if let hir::ItemKind::Impl(_, _, defaultness, ..) = item.node { defaultness.is_default() } else { false } } None => { self.global_tcx() .impl_defaultness(node_item_def_id) .is_default() } } } pub fn impl_item_is_final(self, node_item: &NodeItem) -> bool { node_item.item.is_final() && !self.impl_is_default(node_item.node.def_id()) } } pub enum TupleArgumentsFlag { Yes, No }