//! Miscellaneous type-system utilities that are too small to deserve their own modules. use crate::hir; use crate::hir::def_id::DefId; use crate::hir::map::DefPathData; use crate::mir::interpret::{sign_extend, truncate}; use crate::ich::NodeIdHashingMode; use crate::traits::{self, ObligationCause}; use crate::ty::{self, DefIdTree, Ty, TyCtxt, GenericParamDefKind, TypeFoldable}; use crate::ty::subst::{Subst, InternalSubsts, SubstsRef, UnpackedKind}; use crate::ty::query::TyCtxtAt; use crate::ty::TyKind::*; use crate::ty::layout::{Integer, IntegerExt}; use crate::mir::interpret::ConstValue; use crate::util::common::ErrorReported; use crate::middle::lang_items; use rustc_data_structures::stable_hasher::{StableHasher, HashStable}; use rustc_data_structures::fx::{FxHashMap, FxHashSet}; use rustc_macros::HashStable; use std::{cmp, fmt}; use syntax::ast; use syntax::attr::{self, SignedInt, UnsignedInt}; use syntax_pos::{Span, DUMMY_SP}; #[derive(Copy, Clone, Debug)] pub struct Discr<'tcx> { /// Bit representation of the discriminant (e.g., `-128i8` is `0xFF_u128`). pub val: u128, pub ty: Ty<'tcx> } impl<'tcx> fmt::Display for Discr<'tcx> { fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { match self.ty.sty { ty::Int(ity) => { let size = ty::tls::with(|tcx| { Integer::from_attr(&tcx, SignedInt(ity)).size() }); let x = self.val; // sign extend the raw representation to be an i128 let x = sign_extend(x, size) as i128; write!(fmt, "{}", x) }, _ => write!(fmt, "{}", self.val), } } } impl<'tcx> Discr<'tcx> { /// Adds `1` to the value and wraps around if the maximum for the type is reached. pub fn wrap_incr<'a, 'gcx>(self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Self { self.checked_add(tcx, 1).0 } pub fn checked_add<'a, 'gcx>(self, tcx: TyCtxt<'a, 'gcx, 'tcx>, n: u128) -> (Self, bool) { let (int, signed) = match self.ty.sty { Int(ity) => (Integer::from_attr(&tcx, SignedInt(ity)), true), Uint(uty) => (Integer::from_attr(&tcx, UnsignedInt(uty)), false), _ => bug!("non integer discriminant"), }; let size = int.size(); let bit_size = int.size().bits(); let shift = 128 - bit_size; if signed { let sext = |u| { sign_extend(u, size) as i128 }; let min = sext(1_u128 << (bit_size - 1)); let max = i128::max_value() >> shift; let val = sext(self.val); assert!(n < (i128::max_value() as u128)); let n = n as i128; let oflo = val > max - n; let val = if oflo { min + (n - (max - val) - 1) } else { val + n }; // zero the upper bits let val = val as u128; let val = truncate(val, size); (Self { val: val as u128, ty: self.ty, }, oflo) } else { let max = u128::max_value() >> shift; let val = self.val; let oflo = val > max - n; let val = if oflo { n - (max - val) - 1 } else { val + n }; (Self { val: val, ty: self.ty, }, oflo) } } } pub trait IntTypeExt { fn to_ty<'a, 'gcx, 'tcx>(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Ty<'tcx>; fn disr_incr<'a, 'tcx>(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>, val: Option>) -> Option>; fn initial_discriminant<'a, 'tcx>(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> Discr<'tcx>; } impl IntTypeExt for attr::IntType { fn to_ty<'a, 'gcx, 'tcx>(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Ty<'tcx> { match *self { SignedInt(ast::IntTy::I8) => tcx.types.i8, SignedInt(ast::IntTy::I16) => tcx.types.i16, SignedInt(ast::IntTy::I32) => tcx.types.i32, SignedInt(ast::IntTy::I64) => tcx.types.i64, SignedInt(ast::IntTy::I128) => tcx.types.i128, SignedInt(ast::IntTy::Isize) => tcx.types.isize, UnsignedInt(ast::UintTy::U8) => tcx.types.u8, UnsignedInt(ast::UintTy::U16) => tcx.types.u16, UnsignedInt(ast::UintTy::U32) => tcx.types.u32, UnsignedInt(ast::UintTy::U64) => tcx.types.u64, UnsignedInt(ast::UintTy::U128) => tcx.types.u128, UnsignedInt(ast::UintTy::Usize) => tcx.types.usize, } } fn initial_discriminant<'a, 'tcx>(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> Discr<'tcx> { Discr { val: 0, ty: self.to_ty(tcx) } } fn disr_incr<'a, 'tcx>( &self, tcx: TyCtxt<'a, 'tcx, 'tcx>, val: Option>, ) -> Option> { if let Some(val) = val { assert_eq!(self.to_ty(tcx), val.ty); let (new, oflo) = val.checked_add(tcx, 1); if oflo { None } else { Some(new) } } else { Some(self.initial_discriminant(tcx)) } } } #[derive(Clone)] pub enum CopyImplementationError<'tcx> { InfrigingFields(Vec<&'tcx ty::FieldDef>), NotAnAdt, HasDestructor, } /// Describes whether a type is representable. For types that are not /// representable, 'SelfRecursive' and 'ContainsRecursive' are used to /// distinguish between types that are recursive with themselves and types that /// contain a different recursive type. These cases can therefore be treated /// differently when reporting errors. /// /// The ordering of the cases is significant. They are sorted so that cmp::max /// will keep the "more erroneous" of two values. #[derive(Clone, PartialOrd, Ord, Eq, PartialEq, Debug)] pub enum Representability { Representable, ContainsRecursive, SelfRecursive(Vec), } impl<'tcx> ty::ParamEnv<'tcx> { pub fn can_type_implement_copy<'a>(self, tcx: TyCtxt<'a, 'tcx, 'tcx>, self_type: Ty<'tcx>) -> Result<(), CopyImplementationError<'tcx>> { // FIXME: (@jroesch) float this code up tcx.infer_ctxt().enter(|infcx| { let (adt, substs) = match self_type.sty { // These types used to have a builtin impl. // Now libcore provides that impl. ty::Uint(_) | ty::Int(_) | ty::Bool | ty::Float(_) | ty::Char | ty::RawPtr(..) | ty::Never | ty::Ref(_, _, hir::MutImmutable) => return Ok(()), ty::Adt(adt, substs) => (adt, substs), _ => return Err(CopyImplementationError::NotAnAdt), }; let mut infringing = Vec::new(); for variant in &adt.variants { for field in &variant.fields { let ty = field.ty(tcx, substs); if ty.references_error() { continue; } let span = tcx.def_span(field.did); let cause = ObligationCause { span, ..ObligationCause::dummy() }; let ctx = traits::FulfillmentContext::new(); match traits::fully_normalize(&infcx, ctx, cause, self, &ty) { Ok(ty) => if !infcx.type_is_copy_modulo_regions(self, ty, span) { infringing.push(field); } Err(errors) => { infcx.report_fulfillment_errors(&errors, None, false); } }; } } if !infringing.is_empty() { return Err(CopyImplementationError::InfrigingFields(infringing)); } if adt.has_dtor(tcx) { return Err(CopyImplementationError::HasDestructor); } Ok(()) }) } } impl<'a, 'tcx> TyCtxt<'a, 'tcx, 'tcx> { /// Creates a hash of the type `Ty` which will be the same no matter what crate /// context it's calculated within. This is used by the `type_id` intrinsic. pub fn type_id_hash(self, ty: Ty<'tcx>) -> u64 { let mut hasher = StableHasher::new(); let mut hcx = self.create_stable_hashing_context(); // We want the type_id be independent of the types free regions, so we // erase them. The erase_regions() call will also anonymize bound // regions, which is desirable too. let ty = self.erase_regions(&ty); hcx.while_hashing_spans(false, |hcx| { hcx.with_node_id_hashing_mode(NodeIdHashingMode::HashDefPath, |hcx| { ty.hash_stable(hcx, &mut hasher); }); }); hasher.finish() } } impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> { pub fn has_error_field(self, ty: Ty<'tcx>) -> bool { if let ty::Adt(def, substs) = ty.sty { for field in def.all_fields() { let field_ty = field.ty(self, substs); if let Error = field_ty.sty { return true; } } } false } /// Returns the deeply last field of nested structures, or the same type, /// if not a structure at all. Corresponds to the only possible unsized /// field, and its type can be used to determine unsizing strategy. pub fn struct_tail(self, mut ty: Ty<'tcx>) -> Ty<'tcx> { loop { match ty.sty { ty::Adt(def, substs) => { if !def.is_struct() { break; } match def.non_enum_variant().fields.last() { Some(f) => ty = f.ty(self, substs), None => break, } } ty::Tuple(tys) => { if let Some((&last_ty, _)) = tys.split_last() { ty = last_ty.expect_ty(); } else { break; } } _ => { break; } } } ty } /// Same as applying struct_tail on `source` and `target`, but only /// keeps going as long as the two types are instances of the same /// structure definitions. /// For `(Foo>, Foo)`, the result will be `(Foo, Trait)`, /// whereas struct_tail produces `T`, and `Trait`, respectively. pub fn struct_lockstep_tails(self, source: Ty<'tcx>, target: Ty<'tcx>) -> (Ty<'tcx>, Ty<'tcx>) { let (mut a, mut b) = (source, target); loop { match (&a.sty, &b.sty) { (&Adt(a_def, a_substs), &Adt(b_def, b_substs)) if a_def == b_def && a_def.is_struct() => { if let Some(f) = a_def.non_enum_variant().fields.last() { a = f.ty(self, a_substs); b = f.ty(self, b_substs); } else { break; } }, (&Tuple(a_tys), &Tuple(b_tys)) if a_tys.len() == b_tys.len() => { if let Some(a_last) = a_tys.last() { a = a_last.expect_ty(); b = b_tys.last().unwrap().expect_ty(); } else { break; } }, _ => break, } } (a, b) } /// Given a set of predicates that apply to an object type, returns /// the region bounds that the (erased) `Self` type must /// outlive. Precisely *because* the `Self` type is erased, the /// parameter `erased_self_ty` must be supplied to indicate what type /// has been used to represent `Self` in the predicates /// themselves. This should really be a unique type; `FreshTy(0)` is a /// popular choice. /// /// N.B., in some cases, particularly around higher-ranked bounds, /// this function returns a kind of conservative approximation. /// That is, all regions returned by this function are definitely /// required, but there may be other region bounds that are not /// returned, as well as requirements like `for<'a> T: 'a`. /// /// Requires that trait definitions have been processed so that we can /// elaborate predicates and walk supertraits. // // FIXME: callers may only have a `&[Predicate]`, not a `Vec`, so that's // what this code should accept. pub fn required_region_bounds(self, erased_self_ty: Ty<'tcx>, predicates: Vec>) -> Vec> { debug!("required_region_bounds(erased_self_ty={:?}, predicates={:?})", erased_self_ty, predicates); assert!(!erased_self_ty.has_escaping_bound_vars()); traits::elaborate_predicates(self, predicates) .filter_map(|predicate| { match predicate { ty::Predicate::Projection(..) | ty::Predicate::Trait(..) | ty::Predicate::Subtype(..) | ty::Predicate::WellFormed(..) | ty::Predicate::ObjectSafe(..) | ty::Predicate::ClosureKind(..) | ty::Predicate::RegionOutlives(..) | ty::Predicate::ConstEvaluatable(..) => { None } ty::Predicate::TypeOutlives(predicate) => { // Search for a bound of the form `erased_self_ty // : 'a`, but be wary of something like `for<'a> // erased_self_ty : 'a` (we interpret a // higher-ranked bound like that as 'static, // though at present the code in `fulfill.rs` // considers such bounds to be unsatisfiable, so // it's kind of a moot point since you could never // construct such an object, but this seems // correct even if that code changes). let ty::OutlivesPredicate(ref t, ref r) = predicate.skip_binder(); if t == &erased_self_ty && !r.has_escaping_bound_vars() { Some(*r) } else { None } } } }) .collect() } /// Calculate the destructor of a given type. pub fn calculate_dtor( self, adt_did: DefId, validate: &mut dyn FnMut(Self, DefId) -> Result<(), ErrorReported> ) -> Option { let drop_trait = if let Some(def_id) = self.lang_items().drop_trait() { def_id } else { return None; }; self.ensure().coherent_trait(drop_trait); let mut dtor_did = None; let ty = self.type_of(adt_did); self.for_each_relevant_impl(drop_trait, ty, |impl_did| { if let Some(item) = self.associated_items(impl_did).next() { if validate(self, impl_did).is_ok() { dtor_did = Some(item.def_id); } } }); Some(ty::Destructor { did: dtor_did? }) } /// Returns the set of types that are required to be alive in /// order to run the destructor of `def` (see RFCs 769 and /// 1238). /// /// Note that this returns only the constraints for the /// destructor of `def` itself. For the destructors of the /// contents, you need `adt_dtorck_constraint`. pub fn destructor_constraints(self, def: &'tcx ty::AdtDef) -> Vec> { let dtor = match def.destructor(self) { None => { debug!("destructor_constraints({:?}) - no dtor", def.did); return vec![] } Some(dtor) => dtor.did }; // RFC 1238: if the destructor method is tagged with the // attribute `unsafe_destructor_blind_to_params`, then the // compiler is being instructed to *assume* that the // destructor will not access borrowed data, // even if such data is otherwise reachable. // // Such access can be in plain sight (e.g., dereferencing // `*foo.0` of `Foo<'a>(&'a u32)`) or indirectly hidden // (e.g., calling `foo.0.clone()` of `Foo`). if self.has_attr(dtor, "unsafe_destructor_blind_to_params") { debug!("destructor_constraint({:?}) - blind", def.did); return vec![]; } let impl_def_id = self.associated_item(dtor).container.id(); let impl_generics = self.generics_of(impl_def_id); // We have a destructor - all the parameters that are not // pure_wrt_drop (i.e, don't have a #[may_dangle] attribute) // must be live. // We need to return the list of parameters from the ADTs // generics/substs that correspond to impure parameters on the // impl's generics. This is a bit ugly, but conceptually simple: // // Suppose our ADT looks like the following // // struct S(X, Y, Z); // // and the impl is // // impl<#[may_dangle] P0, P1, P2> Drop for S // // We want to return the parameters (X, Y). For that, we match // up the item-substs with the substs on the impl ADT, // , and then look up which of the impl substs refer to // parameters marked as pure. let impl_substs = match self.type_of(impl_def_id).sty { ty::Adt(def_, substs) if def_ == def => substs, _ => bug!() }; let item_substs = match self.type_of(def.did).sty { ty::Adt(def_, substs) if def_ == def => substs, _ => bug!() }; let result = item_substs.iter().zip(impl_substs.iter()) .filter(|&(_, &k)| { match k.unpack() { UnpackedKind::Lifetime(&ty::RegionKind::ReEarlyBound(ref ebr)) => { !impl_generics.region_param(ebr, self).pure_wrt_drop } UnpackedKind::Type(&ty::TyS { sty: ty::Param(ref pt), .. }) => { !impl_generics.type_param(pt, self).pure_wrt_drop } UnpackedKind::Const(&ty::Const { val: ConstValue::Param(ref pc), .. }) => { !impl_generics.const_param(pc, self).pure_wrt_drop } UnpackedKind::Lifetime(_) | UnpackedKind::Type(_) | UnpackedKind::Const(_) => { // Not a type, const or region param: this should be reported // as an error. false } } }) .map(|(&item_param, _)| item_param) .collect(); debug!("destructor_constraint({:?}) = {:?}", def.did, result); result } /// Returns `true` if `def_id` refers to a closure (e.g., `|x| x * 2`). Note /// that closures have a `DefId`, but the closure *expression* also /// has a `HirId` that is located within the context where the /// closure appears (and, sadly, a corresponding `NodeId`, since /// those are not yet phased out). The parent of the closure's /// `DefId` will also be the context where it appears. pub fn is_closure(self, def_id: DefId) -> bool { self.def_key(def_id).disambiguated_data.data == DefPathData::ClosureExpr } /// Returns `true` if `def_id` refers to a trait (i.e., `trait Foo { ... }`). pub fn is_trait(self, def_id: DefId) -> bool { if let DefPathData::Trait(_) = self.def_key(def_id).disambiguated_data.data { true } else { false } } /// Returns `true` if `def_id` refers to a trait alias (i.e., `trait Foo = ...;`), /// and `false` otherwise. pub fn is_trait_alias(self, def_id: DefId) -> bool { if let DefPathData::TraitAlias(_) = self.def_key(def_id).disambiguated_data.data { true } else { false } } /// Returns `true` if this `DefId` refers to the implicit constructor for /// a tuple struct like `struct Foo(u32)`, and `false` otherwise. pub fn is_constructor(self, def_id: DefId) -> bool { self.def_key(def_id).disambiguated_data.data == DefPathData::Ctor } /// Given the `DefId` of a fn or closure, returns the `DefId` of /// the innermost fn item that the closure is contained within. /// This is a significant `DefId` because, when we do /// type-checking, we type-check this fn item and all of its /// (transitive) closures together. Therefore, when we fetch the /// `typeck_tables_of` the closure, for example, we really wind up /// fetching the `typeck_tables_of` the enclosing fn item. pub fn closure_base_def_id(self, def_id: DefId) -> DefId { let mut def_id = def_id; while self.is_closure(def_id) { def_id = self.parent(def_id).unwrap_or_else(|| { bug!("closure {:?} has no parent", def_id); }); } def_id } /// Given the `DefId` and substs a closure, creates the type of /// `self` argument that the closure expects. For example, for a /// `Fn` closure, this would return a reference type `&T` where /// `T = closure_ty`. /// /// Returns `None` if this closure's kind has not yet been inferred. /// This should only be possible during type checking. /// /// Note that the return value is a late-bound region and hence /// wrapped in a binder. pub fn closure_env_ty(self, closure_def_id: DefId, closure_substs: ty::ClosureSubsts<'tcx>) -> Option>> { let closure_ty = self.mk_closure(closure_def_id, closure_substs); let env_region = ty::ReLateBound(ty::INNERMOST, ty::BrEnv); let closure_kind_ty = closure_substs.closure_kind_ty(closure_def_id, self); let closure_kind = closure_kind_ty.to_opt_closure_kind()?; let env_ty = match closure_kind { ty::ClosureKind::Fn => self.mk_imm_ref(self.mk_region(env_region), closure_ty), ty::ClosureKind::FnMut => self.mk_mut_ref(self.mk_region(env_region), closure_ty), ty::ClosureKind::FnOnce => closure_ty, }; Some(ty::Binder::bind(env_ty)) } /// Given the `DefId` of some item that has no type or const parameters, make /// a suitable "empty substs" for it. pub fn empty_substs_for_def_id(self, item_def_id: DefId) -> SubstsRef<'tcx> { InternalSubsts::for_item(self, item_def_id, |param, _| { match param.kind { GenericParamDefKind::Lifetime => self.types.re_erased.into(), GenericParamDefKind::Type { .. } => { bug!("empty_substs_for_def_id: {:?} has type parameters", item_def_id) } GenericParamDefKind::Const { .. } => { bug!("empty_substs_for_def_id: {:?} has const parameters", item_def_id) } } }) } /// Returns `true` if the node pointed to by `def_id` is a `static` item. pub fn is_static(&self, def_id: DefId) -> bool { self.static_mutability(def_id).is_some() } /// Returns `true` if the node pointed to by `def_id` is a mutable `static` item. pub fn is_mutable_static(&self, def_id: DefId) -> bool { self.static_mutability(def_id) == Some(hir::MutMutable) } /// Expands the given impl trait type, stopping if the type is recursive. pub fn try_expand_impl_trait_type( self, def_id: DefId, substs: SubstsRef<'tcx>, ) -> Result, Ty<'tcx>> { use crate::ty::fold::TypeFolder; struct OpaqueTypeExpander<'a, 'gcx, 'tcx> { // Contains the DefIds of the opaque types that are currently being // expanded. When we expand an opaque type we insert the DefId of // that type, and when we finish expanding that type we remove the // its DefId. seen_opaque_tys: FxHashSet, primary_def_id: DefId, found_recursion: bool, tcx: TyCtxt<'a, 'gcx, 'tcx>, } impl<'a, 'gcx, 'tcx> OpaqueTypeExpander<'a, 'gcx, 'tcx> { fn expand_opaque_ty( &mut self, def_id: DefId, substs: SubstsRef<'tcx>, ) -> Option> { if self.found_recursion { None } else if self.seen_opaque_tys.insert(def_id) { let generic_ty = self.tcx.type_of(def_id); let concrete_ty = generic_ty.subst(self.tcx, substs); let expanded_ty = self.fold_ty(concrete_ty); self.seen_opaque_tys.remove(&def_id); Some(expanded_ty) } else { // If another opaque type that we contain is recursive, then it // will report the error, so we don't have to. self.found_recursion = def_id == self.primary_def_id; None } } } impl<'a, 'gcx, 'tcx> TypeFolder<'gcx, 'tcx> for OpaqueTypeExpander<'a, 'gcx, 'tcx> { fn tcx(&self) -> TyCtxt<'_, 'gcx, 'tcx> { self.tcx } fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> { if let ty::Opaque(def_id, substs) = t.sty { self.expand_opaque_ty(def_id, substs).unwrap_or(t) } else { t.super_fold_with(self) } } } let mut visitor = OpaqueTypeExpander { seen_opaque_tys: FxHashSet::default(), primary_def_id: def_id, found_recursion: false, tcx: self, }; let expanded_type = visitor.expand_opaque_ty(def_id, substs).unwrap(); if visitor.found_recursion { Err(expanded_type) } else { Ok(expanded_type) } } } impl<'a, 'tcx> ty::TyS<'tcx> { /// Checks whether values of this type `T` are *moved* or *copied* /// when referenced -- this amounts to a check for whether `T: /// Copy`, but note that we **don't** consider lifetimes when /// doing this check. This means that we may generate MIR which /// does copies even when the type actually doesn't satisfy the /// full requirements for the `Copy` trait (cc #29149) -- this /// winds up being reported as an error during NLL borrow check. pub fn is_copy_modulo_regions(&'tcx self, tcx: TyCtxt<'a, 'tcx, 'tcx>, param_env: ty::ParamEnv<'tcx>, span: Span) -> bool { tcx.at(span).is_copy_raw(param_env.and(self)) } /// Checks whether values of this type `T` have a size known at /// compile time (i.e., whether `T: Sized`). Lifetimes are ignored /// for the purposes of this check, so it can be an /// over-approximation in generic contexts, where one can have /// strange rules like `>::Bar: Sized` that /// actually carry lifetime requirements. pub fn is_sized(&'tcx self, tcx_at: TyCtxtAt<'a, 'tcx, 'tcx>, param_env: ty::ParamEnv<'tcx>)-> bool { tcx_at.is_sized_raw(param_env.and(self)) } /// Checks whether values of this type `T` implement the `Freeze` /// trait -- frozen types are those that do not contain a /// `UnsafeCell` anywhere. This is a language concept used to /// distinguish "true immutability", which is relevant to /// optimization as well as the rules around static values. Note /// that the `Freeze` trait is not exposed to end users and is /// effectively an implementation detail. pub fn is_freeze(&'tcx self, tcx: TyCtxt<'a, 'tcx, 'tcx>, param_env: ty::ParamEnv<'tcx>, span: Span)-> bool { tcx.at(span).is_freeze_raw(param_env.and(self)) } /// If `ty.needs_drop(...)` returns `true`, then `ty` is definitely /// non-copy and *might* have a destructor attached; if it returns /// `false`, then `ty` definitely has no destructor (i.e., no drop glue). /// /// (Note that this implies that if `ty` has a destructor attached, /// then `needs_drop` will definitely return `true` for `ty`.) #[inline] pub fn needs_drop(&'tcx self, tcx: TyCtxt<'a, 'tcx, 'tcx>, param_env: ty::ParamEnv<'tcx>) -> bool { tcx.needs_drop_raw(param_env.and(self)).0 } pub fn same_type(a: Ty<'tcx>, b: Ty<'tcx>) -> bool { match (&a.sty, &b.sty) { (&Adt(did_a, substs_a), &Adt(did_b, substs_b)) => { if did_a != did_b { return false; } substs_a.types().zip(substs_b.types()).all(|(a, b)| Self::same_type(a, b)) } _ => a == b, } } /// Check whether a type is representable. This means it cannot contain unboxed /// structural recursion. This check is needed for structs and enums. pub fn is_representable(&'tcx self, tcx: TyCtxt<'a, 'tcx, 'tcx>, sp: Span) -> Representability { // Iterate until something non-representable is found fn fold_repr>(iter: It) -> Representability { iter.fold(Representability::Representable, |r1, r2| { match (r1, r2) { (Representability::SelfRecursive(v1), Representability::SelfRecursive(v2)) => { Representability::SelfRecursive(v1.into_iter().chain(v2).collect()) } (r1, r2) => cmp::max(r1, r2) } }) } fn are_inner_types_recursive<'a, 'tcx>( tcx: TyCtxt<'a, 'tcx, 'tcx>, sp: Span, seen: &mut Vec>, representable_cache: &mut FxHashMap, Representability>, ty: Ty<'tcx>) -> Representability { match ty.sty { Tuple(ref ts) => { // Find non representable fold_repr(ts.iter().map(|ty| { is_type_structurally_recursive( tcx, sp, seen, representable_cache, ty.expect_ty(), ) })) } // Fixed-length vectors. // FIXME(#11924) Behavior undecided for zero-length vectors. Array(ty, _) => { is_type_structurally_recursive(tcx, sp, seen, representable_cache, ty) } Adt(def, substs) => { // Find non representable fields with their spans fold_repr(def.all_fields().map(|field| { let ty = field.ty(tcx, substs); let span = tcx.hir().span_if_local(field.did).unwrap_or(sp); match is_type_structurally_recursive(tcx, span, seen, representable_cache, ty) { Representability::SelfRecursive(_) => { Representability::SelfRecursive(vec![span]) } x => x, } })) } Closure(..) => { // this check is run on type definitions, so we don't expect // to see closure types bug!("requires check invoked on inapplicable type: {:?}", ty) } _ => Representability::Representable, } } fn same_struct_or_enum<'tcx>(ty: Ty<'tcx>, def: &'tcx ty::AdtDef) -> bool { match ty.sty { Adt(ty_def, _) => { ty_def == def } _ => false } } // Does the type `ty` directly (without indirection through a pointer) // contain any types on stack `seen`? fn is_type_structurally_recursive<'a, 'tcx>( tcx: TyCtxt<'a, 'tcx, 'tcx>, sp: Span, seen: &mut Vec>, representable_cache: &mut FxHashMap, Representability>, ty: Ty<'tcx>) -> Representability { debug!("is_type_structurally_recursive: {:?} {:?}", ty, sp); if let Some(representability) = representable_cache.get(ty) { debug!("is_type_structurally_recursive: {:?} {:?} - (cached) {:?}", ty, sp, representability); return representability.clone(); } let representability = is_type_structurally_recursive_inner( tcx, sp, seen, representable_cache, ty); representable_cache.insert(ty, representability.clone()); representability } fn is_type_structurally_recursive_inner<'a, 'tcx>( tcx: TyCtxt<'a, 'tcx, 'tcx>, sp: Span, seen: &mut Vec>, representable_cache: &mut FxHashMap, Representability>, ty: Ty<'tcx>) -> Representability { match ty.sty { Adt(def, _) => { { // Iterate through stack of previously seen types. let mut iter = seen.iter(); // The first item in `seen` is the type we are actually curious about. // We want to return SelfRecursive if this type contains itself. // It is important that we DON'T take generic parameters into account // for this check, so that Bar in this example counts as SelfRecursive: // // struct Foo; // struct Bar { x: Bar } if let Some(&seen_type) = iter.next() { if same_struct_or_enum(seen_type, def) { debug!("SelfRecursive: {:?} contains {:?}", seen_type, ty); return Representability::SelfRecursive(vec![sp]); } } // We also need to know whether the first item contains other types // that are structurally recursive. If we don't catch this case, we // will recurse infinitely for some inputs. // // It is important that we DO take generic parameters into account // here, so that code like this is considered SelfRecursive, not // ContainsRecursive: // // struct Foo { Option> } for &seen_type in iter { if ty::TyS::same_type(ty, seen_type) { debug!("ContainsRecursive: {:?} contains {:?}", seen_type, ty); return Representability::ContainsRecursive; } } } // For structs and enums, track all previously seen types by pushing them // onto the 'seen' stack. seen.push(ty); let out = are_inner_types_recursive(tcx, sp, seen, representable_cache, ty); seen.pop(); out } _ => { // No need to push in other cases. are_inner_types_recursive(tcx, sp, seen, representable_cache, ty) } } } debug!("is_type_representable: {:?}", self); // To avoid a stack overflow when checking an enum variant or struct that // contains a different, structurally recursive type, maintain a stack // of seen types and check recursion for each of them (issues #3008, #3779). let mut seen: Vec> = Vec::new(); let mut representable_cache = FxHashMap::default(); let r = is_type_structurally_recursive( tcx, sp, &mut seen, &mut representable_cache, self); debug!("is_type_representable: {:?} is {:?}", self, r); r } } fn is_copy_raw<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, query: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool { let (param_env, ty) = query.into_parts(); let trait_def_id = tcx.require_lang_item(lang_items::CopyTraitLangItem); tcx.infer_ctxt() .enter(|infcx| traits::type_known_to_meet_bound_modulo_regions( &infcx, param_env, ty, trait_def_id, DUMMY_SP, )) } fn is_sized_raw<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, query: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool { let (param_env, ty) = query.into_parts(); let trait_def_id = tcx.require_lang_item(lang_items::SizedTraitLangItem); tcx.infer_ctxt() .enter(|infcx| traits::type_known_to_meet_bound_modulo_regions( &infcx, param_env, ty, trait_def_id, DUMMY_SP, )) } fn is_freeze_raw<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, query: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool { let (param_env, ty) = query.into_parts(); let trait_def_id = tcx.require_lang_item(lang_items::FreezeTraitLangItem); tcx.infer_ctxt() .enter(|infcx| traits::type_known_to_meet_bound_modulo_regions( &infcx, param_env, ty, trait_def_id, DUMMY_SP, )) } #[derive(Clone, HashStable)] pub struct NeedsDrop(pub bool); fn needs_drop_raw<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, query: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> NeedsDrop { let (param_env, ty) = query.into_parts(); let needs_drop = |ty: Ty<'tcx>| -> bool { tcx.needs_drop_raw(param_env.and(ty)).0 }; assert!(!ty.needs_infer()); NeedsDrop(match ty.sty { // Fast-path for primitive types ty::Infer(ty::FreshIntTy(_)) | ty::Infer(ty::FreshFloatTy(_)) | ty::Bool | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Never | ty::FnDef(..) | ty::FnPtr(_) | ty::Char | ty::GeneratorWitness(..) | ty::RawPtr(_) | ty::Ref(..) | ty::Str => false, // Foreign types can never have destructors ty::Foreign(..) => false, // `ManuallyDrop` doesn't have a destructor regardless of field types. ty::Adt(def, _) if Some(def.did) == tcx.lang_items().manually_drop() => false, // Issue #22536: We first query `is_copy_modulo_regions`. It sees a // normalized version of the type, and therefore will definitely // know whether the type implements Copy (and thus needs no // cleanup/drop/zeroing) ... _ if ty.is_copy_modulo_regions(tcx, param_env, DUMMY_SP) => false, // ... (issue #22536 continued) but as an optimization, still use // prior logic of asking for the structural "may drop". // FIXME(#22815): Note that this is a conservative heuristic; // it may report that the type "may drop" when actual type does // not actually have a destructor associated with it. But since // the type absolutely did not have the `Copy` bound attached // (see above), it is sound to treat it as having a destructor. // User destructors are the only way to have concrete drop types. ty::Adt(def, _) if def.has_dtor(tcx) => true, // Can refer to a type which may drop. // FIXME(eddyb) check this against a ParamEnv. ty::Dynamic(..) | ty::Projection(..) | ty::Param(_) | ty::Bound(..) | ty::Placeholder(..) | ty::Opaque(..) | ty::Infer(_) | ty::Error => true, ty::UnnormalizedProjection(..) => bug!("only used with chalk-engine"), // Structural recursion. ty::Array(ty, _) | ty::Slice(ty) => needs_drop(ty), ty::Closure(def_id, ref substs) => substs.upvar_tys(def_id, tcx).any(needs_drop), // Pessimistically assume that all generators will require destructors // as we don't know if a destructor is a noop or not until after the MIR // state transformation pass ty::Generator(..) => true, ty::Tuple(ref tys) => tys.iter().map(|k| k.expect_ty()).any(needs_drop), // unions don't have destructors because of the child types, // only if they manually implement `Drop` (handled above). ty::Adt(def, _) if def.is_union() => false, ty::Adt(def, substs) => def.variants.iter().any( |variant| variant.fields.iter().any( |field| needs_drop(field.ty(tcx, substs)))), }) } pub enum ExplicitSelf<'tcx> { ByValue, ByReference(ty::Region<'tcx>, hir::Mutability), ByRawPointer(hir::Mutability), ByBox, Other } impl<'tcx> ExplicitSelf<'tcx> { /// Categorizes an explicit self declaration like `self: SomeType` /// into either `self`, `&self`, `&mut self`, `Box`, or /// `Other`. /// This is mainly used to require the arbitrary_self_types feature /// in the case of `Other`, to improve error messages in the common cases, /// and to make `Other` non-object-safe. /// /// Examples: /// /// ``` /// impl<'a> Foo for &'a T { /// // Legal declarations: /// fn method1(self: &&'a T); // ExplicitSelf::ByReference /// fn method2(self: &'a T); // ExplicitSelf::ByValue /// fn method3(self: Box<&'a T>); // ExplicitSelf::ByBox /// fn method4(self: Rc<&'a T>); // ExplicitSelf::Other /// /// // Invalid cases will be caught by `check_method_receiver`: /// fn method_err1(self: &'a mut T); // ExplicitSelf::Other /// fn method_err2(self: &'static T) // ExplicitSelf::ByValue /// fn method_err3(self: &&T) // ExplicitSelf::ByReference /// } /// ``` /// pub fn determine

( self_arg_ty: Ty<'tcx>, is_self_ty: P ) -> ExplicitSelf<'tcx> where P: Fn(Ty<'tcx>) -> bool { use self::ExplicitSelf::*; match self_arg_ty.sty { _ if is_self_ty(self_arg_ty) => ByValue, ty::Ref(region, ty, mutbl) if is_self_ty(ty) => { ByReference(region, mutbl) } ty::RawPtr(ty::TypeAndMut { ty, mutbl }) if is_self_ty(ty) => { ByRawPointer(mutbl) } ty::Adt(def, _) if def.is_box() && is_self_ty(self_arg_ty.boxed_ty()) => { ByBox } _ => Other } } } pub fn provide(providers: &mut ty::query::Providers<'_>) { *providers = ty::query::Providers { is_copy_raw, is_sized_raw, is_freeze_raw, needs_drop_raw, ..*providers }; }