//! Management of the encoding of LLVM bytecode into rlibs //! //! This module contains the management of encoding LLVM bytecode into rlibs, //! primarily for the usage in LTO situations. Currently the compiler will //! unconditionally encode LLVM-IR into rlibs regardless of what's happening //! elsewhere, so we currently compress the bytecode via deflate to avoid taking //! up too much space on disk. //! //! After compressing the bytecode we then have the rest of the format to //! basically deal with various bugs in various archive implementations. The //! format currently is: //! //! RLIB LLVM-BYTECODE OBJECT LAYOUT //! Version 2 //! Bytes Data //! 0..10 "RUST_OBJECT" encoded in ASCII //! 11..14 format version as little-endian u32 //! 15..19 the length of the module identifier string //! 20..n the module identifier string //! n..n+8 size in bytes of deflate compressed LLVM bitcode as //! little-endian u64 //! n+9.. compressed LLVM bitcode //! ? maybe a byte to make this whole thing even length use std::io::{Read, Write}; use std::ptr; use std::str; use flate2::read::DeflateDecoder; use flate2::write::DeflateEncoder; use flate2::Compression; // This is the "magic number" expected at the beginning of a LLVM bytecode // object in an rlib. pub const RLIB_BYTECODE_OBJECT_MAGIC: &[u8] = b"RUST_OBJECT"; // The version number this compiler will write to bytecode objects in rlibs pub const RLIB_BYTECODE_OBJECT_VERSION: u8 = 2; pub fn encode(identifier: &str, bytecode: &[u8]) -> Vec { let mut encoded = Vec::new(); // Start off with the magic string encoded.extend_from_slice(RLIB_BYTECODE_OBJECT_MAGIC); // Next up is the version encoded.extend_from_slice(&[RLIB_BYTECODE_OBJECT_VERSION, 0, 0, 0]); // Next is the LLVM module identifier length + contents let identifier_len = identifier.len(); encoded.extend_from_slice(&[ (identifier_len >> 0) as u8, (identifier_len >> 8) as u8, (identifier_len >> 16) as u8, (identifier_len >> 24) as u8, ]); encoded.extend_from_slice(identifier.as_bytes()); // Next is the LLVM module deflate compressed, prefixed with its length. We // don't know its length yet, so fill in 0s let deflated_size_pos = encoded.len(); encoded.extend_from_slice(&[0, 0, 0, 0, 0, 0, 0, 0]); let before = encoded.len(); DeflateEncoder::new(&mut encoded, Compression::fast()).write_all(bytecode).unwrap(); let after = encoded.len(); // Fill in the length we reserved space for before let bytecode_len = (after - before) as u64; encoded[deflated_size_pos + 0] = (bytecode_len >> 0) as u8; encoded[deflated_size_pos + 1] = (bytecode_len >> 8) as u8; encoded[deflated_size_pos + 2] = (bytecode_len >> 16) as u8; encoded[deflated_size_pos + 3] = (bytecode_len >> 24) as u8; encoded[deflated_size_pos + 4] = (bytecode_len >> 32) as u8; encoded[deflated_size_pos + 5] = (bytecode_len >> 40) as u8; encoded[deflated_size_pos + 6] = (bytecode_len >> 48) as u8; encoded[deflated_size_pos + 7] = (bytecode_len >> 56) as u8; // If the number of bytes written to the object so far is odd, add a // padding byte to make it even. This works around a crash bug in LLDB // (see issue #15950) if encoded.len() % 2 == 1 { encoded.push(0); } return encoded; } pub struct DecodedBytecode<'a> { identifier: &'a str, encoded_bytecode: &'a [u8], } impl<'a> DecodedBytecode<'a> { pub fn new(data: &'a [u8]) -> Result, &'static str> { if !data.starts_with(RLIB_BYTECODE_OBJECT_MAGIC) { return Err("magic bytecode prefix not found"); } let data = &data[RLIB_BYTECODE_OBJECT_MAGIC.len()..]; if !data.starts_with(&[RLIB_BYTECODE_OBJECT_VERSION, 0, 0, 0]) { return Err("wrong version prefix found in bytecode"); } let data = &data[4..]; if data.len() < 4 { return Err("bytecode corrupted"); } let identifier_len = unsafe { u32::from_le(ptr::read_unaligned(data.as_ptr() as *const u32)) as usize }; let data = &data[4..]; if data.len() < identifier_len { return Err("bytecode corrupted"); } let identifier = match str::from_utf8(&data[..identifier_len]) { Ok(s) => s, Err(_) => return Err("bytecode corrupted"), }; let data = &data[identifier_len..]; if data.len() < 8 { return Err("bytecode corrupted"); } let bytecode_len = unsafe { u64::from_le(ptr::read_unaligned(data.as_ptr() as *const u64)) as usize }; let data = &data[8..]; if data.len() < bytecode_len { return Err("bytecode corrupted"); } let encoded_bytecode = &data[..bytecode_len]; Ok(DecodedBytecode { identifier, encoded_bytecode }) } pub fn bytecode(&self) -> Vec { let mut data = Vec::new(); DeflateDecoder::new(self.encoded_bytecode).read_to_end(&mut data).unwrap(); return data; } pub fn identifier(&self) -> &'a str { self.identifier } }